20 research outputs found

    Continuous Operator Authentication for Teleoperated Systems Using Hidden Markov Models [post-print]

    Get PDF
    In this article, we present a novel approach for continuous operator authentication in teleoperated robotic processes based on Hidden Markov Models (HMM). While HMMs were originally developed and widely used in speech recognition, they have shown great performance in human motion and activity modeling. We make an analogy between human language and teleoperated robotic processes (i.e., words are analogous to a teleoperator\u27s gestures, sentences are analogous to the entire teleoperated task or process) and implement HMMs to model the teleoperated task. To test the continuous authentication performance of the proposed method, we conducted two sets of analyses. We built a virtual reality (VR) experimental environment using a commodity VR headset (HTC Vive) and haptic feedback enabled controller (Sensable PHANToM Omni) to simulate a real teleoperated task. An experimental study with 10 subjects was then conducted. We also performed simulated continuous operator authentication by using the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS). The performance of the model was evaluated based on the continuous (real-time) operator authentication accuracy as well as resistance to a simulated impersonation attack. The results suggest that the proposed method is able to achieve 70% (VR experiment) and 81% (JIGSAWS dataset) continuous classification accuracy with as short as a 1-second sample window. It is also capable of detecting an impersonation attack in real-time

    Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    Get PDF
    This paper provides an overview of current progress in the technological advances and the use of deep brain stimulation (DBS) to treat neurological and neuropsychiatric disorders, as presented by participants of the Fourth Annual DBS Think Tank, which was convened in March 2016 in conjunction with the Center for Movement Disorders and Neurorestoration at the University of Florida, Gainesveille FL, USA. The Think Tank discussions first focused on policy and advocacy in DBS research and clinical practice, formation of registries, and issues involving the use of DBS in the treatment of Tourette Syndrome. Next, advances in the use of neuroimaging and electrochemical markers to enhance DBS specificity were addressed. Updates on ongoing use and developments of DBS for the treatment of Parkinson’s disease, essential tremor, Alzheimer’s disease, depression, post-traumatic stress disorder, obesity, addiction were presented, and progress toward innovation(s) in closed-loop applications were discussed. Each section of these proceedings provides updates and highlights of new information as presented at this year’s international Think Tank, with a view toward current and near future advancement of the field

    Proceedings of the Third Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    Get PDF
    The proceedings of the 3rd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, imaging, and computational work on DBS for the treatment of neurological and neuropsychiatric disease. Significant innovations of the past year are emphasized. The Think Tank\u27s contributors represent a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers, and members of industry. Presentations and discussions covered a broad range of topics, including policy and advocacy considerations for the future of DBS, connectomic approaches to DBS targeting, developments in electrophysiology and related strides toward responsive DBS systems, and recent developments in sensor and device technologies

    Control strategies for neuroprostheses using functional neuromuscular stimulation

    No full text

    Control of multiplicative discrete-time systems

    No full text

    Signal processing for sensor arrays

    No full text

    A Discrete-Time Model of Electrcally Stimulated Muscle

    No full text
    corecore