26 research outputs found

    Assessing Kidney Injury Induced by Mercuric Chloride in Guinea Pigs with In Vivo and In Vitro Experiments

    No full text
    Acute kidney injury, which is associated with high levels of morbidity and mortality, affects a significant number of individuals, and can be triggered by multiple factors, such as medications, exposure to toxic chemicals or other substances, disease, and trauma. Because the kidney is a critical organ, understanding and identifying early cellular or gene-level changes can provide a foundation for designing medical interventions. In our earlier work, we identified gene modules anchored to histopathology phenotypes associated with toxicant-induced liver and kidney injuries. Here, using in vivo and in vitro experiments, we assessed and validated these kidney injury-associated modules by analyzing gene expression data from the kidneys of male Hartley guinea pigs exposed to mercuric chloride. Using plasma creatinine levels and cell-viability assays as measures of the extent of renal dysfunction under in vivo and in vitro conditions, we performed an initial range-finding study to identify the appropriate doses and exposure times associated with mild and severe kidney injuries. We then monitored changes in kidney gene expression at the selected doses and time points post-toxicant exposure to characterize the mechanisms of kidney injury. Our injury module-based analysis revealed a dose-dependent activation of several phenotypic cellular processes associated with dilatation, necrosis, and fibrogenesis that were common across the experimental platforms and indicative of processes that initiate kidney damage. Furthermore, a comparison of activated injury modules between guinea pigs and rats indicated a strong correlation between the modules, highlighting their potential for cross-species translational studies

    Toxicant-Induced Metabolic Alterations in Lipid and Amino Acid Pathways Are Predictive of Acute Liver Toxicity in Rats

    No full text
    Liver disease and disorders associated with aberrant hepatocyte metabolism can be initiated via drug and environmental toxicant exposures. In this study, we tested the hypothesis that gene and metabolic profiling can reveal commonalities in liver response to different toxicants and provide the capability to identify early signatures of acute liver toxicity. We used Sprague Dawley rats and three classical hepatotoxicants: acetaminophen (2 g/kg), bromobenzene (0.4 g/kg), and carbon tetrachloride (0.3 g/kg), to identify early perturbations in liver metabolism after a single acute exposure dose. We measured changes in liver genes and plasma metabolites at two time points (5 and 10 h) and used genome-scale metabolic models to identify commonalities in liver responses across the three toxicants. We found strong correlations for gene and metabolic profiles between the toxicants, indicative of similarities in the liver response to toxicity. We identified several injury-specific pathways in lipid and amino acid metabolism that changed similarly across the three toxicants. Our findings suggest that several plasma metabolites in lipid and amino acid metabolism are strongly associated with the progression of liver toxicity, and as such, could be targeted and clinically assessed for their potential as early predictors of acute liver toxicity

    Pancreatic duct cells as a source of VEGF in mice

    Get PDF
    Protostars and young stars are strongly spatially ‘clustered’ or ‘correlated’ within their natal giant molecular clouds. We demonstrate that such clustering leads to the conclusion that the incident bolometric radiative flux upon a random young star/disc is enhanced (relative to volume-averaged fluxes) by a factor that increases with the total stellar mass of the complex. Because the Galactic cloud mass function is top-heavy, the typical star in our Galaxy experienced a much stronger radiative environment than those forming in well-observed nearby (but relatively small) clouds, exceeding fluxes in the Orion Nebular Cluster by factors of ≳30. Heating of the circumstellar disc around a median young star is dominated by this external radiation beyond ∼50 au. And if discs are not well shielded by ambient dust, external ultraviolet irradiation can dominate over the host star down to sub-au scales. Another consequence of stellar clustering is an extremely broad Galaxy-wide distribution of incident flux (spanning >10 decades), with half the Galactic star formation in a substantial ‘tail’ towards even more intense background radiation. We also show that the strength of external irradiation is amplified superlinearly in high-density environments such as the Galactic Centre, starbursts, or high-redshift galaxies
    corecore