2 research outputs found

    The impact of irrigation conditions on the spatial development of microbial colonies in bioheaps

    Get PDF
    This thesis contributes to the bioleaching knowledge base by improved understanding of the relationships between hydrodynamics and micro-organism-ore contacting and colonisation through an integrated study of microbiological and hydrological aspects of heap bioleaching within systems that mimic actual bio-heap environments

    MRI and gravimetric studies of hydrology in drip irrigated heaps and its effect on the propagation of bioleaching microorganisms

    Get PDF
    Heap bioleaching performance is dependent on the contacting of the leach solution with the ore bed, hence on the system hydrodynamics. In this study two experimental setups were used to examine hydrodynamics associated with irrigation from a single drip emitter, one of the most common methods of heap irrigation. A specialist magnetic resonance imaging (MRI) method which is insensitive to the metal content of the ore was used to examine the liquid flow into an ore bed in the immediate vicinity of an irrigation point. The distribution of liquid in, microbial colonisation of and mineral recovery from a bioleach of a large scale 132 kg “ore slice” were subsequently monitored using sample ports positioned along the breadth and height of the reactor. In both systems the lateral movement of the liquid increased with bed depth, though preferential flow was evident. The majority of the liquid flow was in the region directly below the irrigation point and almost no liquid exchange occurred in the areas of lowest liquid content at the upper corners of the bed in which fluid exchange was driven by capillary action. The MRI studies revealed that the liquid distribution was unchanging following an initial settling of the ore bed and that, at steady state, the majority (~60%) of the liquid flowed directly into established large channels. The limited lateral movement of the liquid had a significant impact on the local leaching efficiencies and microbial colonisation of the ore with cell concentrations in the regions of lowest liquid content lying below the detection limit. Hence poor lateral liquid distribution with drip irrigation, and the associated impact on colonisation was identified as a significant disadvantage of this irrigation approach. Further, the need to optimise fluid exchange throughout the ore bed was identified as key for optimisation of leaching performance
    corecore