10,582 research outputs found

    Electroweak Sudakov Corrections and the Top Quark Forward-Backward Asymmetry

    Full text link
    The Standard Model (SM) prediction of the top quark forward backward asymmetry is shown to be slightly enhanced by a correction factor of 1.05 due to electroweak Sudakov (EWS) logarithms of the form (\alpha/sin^2 \theta_W)^n log^{m< 2n} (s/M_{W,Z}^2). The EWS effect on the dijet and t \bar{t} invariant mass spectra is significant, reducing the SM prediction by ~20, 10 % respectively for the highest invariant masses measured at the LHC, and changing the shape of the high-mass tail of the spectrum. These corrections significantly affect measurements of the top quark invariant mass spectrum and the search for an excess of events related to the top quark forward-backward asymmetry.Comment: 5 pages, 2 figure

    Radiative Corrections to Longitudinal and Transverse Gauge Boson and Higgs Production

    Full text link
    Radiative corrections to gauge boson and Higgs production computed recently using soft-collinear effective theory (SCET) require the one-loop high-scale matching coefficients in the standard model. We give explicit expressions for the matching coefficients for the effective field theory (EFT) operators for q qbar -> VV and q qbar -> phi^+ phi for a general gauge theory with an arbitrary number of gauge groups. The group theory factors are given explicitly for the standard model, including both QCD and electroweak corrections.Comment: 16 pages, 49 figure

    Solutions of the Ginsparg-Wilson Relation

    Get PDF
    We analyze general solutions of the Ginsparg-Wilson relation for lattice Dirac operators and formulate a necessary condition for such operators to have non-zero index in the topologically nontrivial background gauge fields.Comment: 6 pages, latex, no figures, set T to 1 in eqs. (10)--(13

    Study of Bc->KK decay with perturbative QCD approach

    Full text link
    In the framework of the perturbative QCD approach, we study the charmless pure weak annihilation Bc->KK decay and find that the branching ratio BR(Bc->KK) O(10^-7). This prediction is so tiny that the Bc->KK decay might be unmeasurable at the Large Hadron Collider.Comment: Revtex4, 12 pages, 1 figure

    The peculiar molecular envelope around the post-AGB star IRAS 08544--4431

    Full text link
    Circumbinary disks have been hypothesized to exist around a number of binary post-AGB stars. Although most of the circumbinary disks have been inferred through the near IR excess, a few of them are strong emitters of molecular emission. Here we present high angular resolution observations of the emission of 12^{12}CO and its isotopomer 13^{13}CO J=2--1 line from the circumstellar envelope around the binary post-AGB star IRAS 08544-4431, which is one of the most prominent members of this class of objects. We find that the envelope is resolved in our observations and two separate components can be identified: (a) a central extended and strong component with very narrow linewidth between 2 - 6 \kms; (b) a weak bipolar outflow with expansion velocity up to 8 \kms. The central compact component possesses low and variable 12^{12}CO/13^{13}CO J=2--1 line ratio, indicating optically thick emission of the main isotope. We estimate a molecular gas mass of 0.0047 M_\odot for this component based on the optically thinner 13^{13}CO J=2--1 line. We discuss the relation of the molecular envelope and the circumbinary disk inferred from near IR excess and compare with other known cases where the distribution of molecular gas has been imaged at high angular resolution.Comment: 14 pages, 4 figures. Accepted for publication in Astrophysical Journa

    Speed and Adaptability of Overlap Fermion Algorithms

    Full text link
    We compare the efficiency of four different algorithms to compute the overlap Dirac operator, both for the speed, i.e., time required to reach a desired numerical accuracy, and for the adaptability, i.e., the scaling of speed with the condition number of the (square of the) Wilson Dirac operator. Although orthogonal polynomial expansions give good speeds at moderate condition number, they are highly non-adaptable. One of the rational function expansions, the Zolotarev approximation, is the fastest and is adaptable. The conjugate gradient approximation is adaptable, self-tuning, and nearly as fast as the ZA.Comment: 30 Pages, 7 Figures, RevTex4, New results for Zolotarev Algorithm, causing major changes in Section V and Concluding sectio

    Influence of retardation effects on 2D magnetoplasmon spectrum

    Full text link
    Within dissipationless limit the magnetic field dependence of magnetoplasmon spectrum for unbounded 2DEG system found to intersect the cyclotron resonance line, and, then approaches the frequency given by light dispersion relation. Recent experiments done for macroscopic disc-shape 2DEG systems confirm theory expectations.Comment: 2 pages,2 figure

    What is Double Parton Scattering?

    Full text link
    Processes such as double Drell-Yan and same-sign WW production have contributions from double parton scattering, which are not well-defined because of a delta(z_\perp=0) singularity that is generated by QCD evolution. We study the single and double parton contributions to these processes, and show how to handle the singularity using factorization and operator renormalization. We compute the QCD evolution of double parton distribution functions (PDFs) due to mixing with single PDFs. The modified evolution of dPDFs at z_\perp=0, including generalized dPDFs for the non-forward case, is given in the appendix. We include a brief discussion of the experimental interpretation of dPDFs and how they can probe flavor, spin and color correlations of partons in hadrons.Comment: 7 pages, 12 figures; v2: appendix fixed and extended, journal versio

    Electroweak Sudakov Corrections using Effective Field Theory

    Full text link
    Electroweak Sudakov corrections of the form alpha^n log^m s/M_{W,Z}^2 are summed using renormalization group evolution in soft-collinear effective theory (SCET). Results are given for the scalar, vector and tensor form-factors for fermion and scalar particles. The formalism for including massive gauge bosons in SCET is developed.Comment: 5 page
    corecore