1,335 research outputs found

    Assessing County-Level Water Footprints of Different Cellulosic- Biofuel Feedstock Pathways

    Get PDF
    While agricultural residue is considered as a near-term feedstock option for cellulosic biofuels, its sustainability must be evaluated by taking water into account. This study aims to analyze the county-level water footprint for four biofuel pathways in the United States, including bioethanol generated from corn grain, stover, wheat straw, and biodiesel from soybean. The county-level blue water footprint of ethanol from corn grain, stover, and wheat straw shows extremely wide variances with a national average of 31, 132, and 139 L of water per liter biofuel (Lw/Lbf), and standard deviation of 133, 323, and 297 Lw/Lbf, respectively. Soybean biodiesel production results in a blue water footprint of 313 Lw/Lbf on the national average with standard deviation of 894 Lw/Lbf. All biofuels show a greater green water footprint than the blue one. This work elucidates how diverse spatial resolutions affect biofuel water footprints, which can provide detailed insights into biofuels’ implications on local water sustainability

    The water footprint of biofuel produced from forest wood residue via a mixed alcohol gasification process

    Get PDF
    Forest residue has been proposed as a feasible candidate for cellulosic biofuels. However, the number of studies assessing its water use remains limited. This work aims to analyze the impacts of forest-based biofuel on water resources and quality by using a water footprint approach. A method established here is tailored to the production system, which includes softwood, hardwood, and short-rotation woody crops. The method is then applied to selected areas in the southeastern region of the United States to quantify the county-level water footprint of the biofuel produced via a mixed alcohol gasification process, under several logistic systems, and at various refinery scales. The results indicate that the blue water sourced from surface or groundwater is minimal, at 2.4 liters per liter of biofuel (l/l). The regional-average green water (rainfall) footprint falls between 400 and 443 l/l. The biofuel pathway appears to have a low nitrogen grey water footprint averaging 25 l/l at the regional level, indicating minimal impacts on water quality. Feedstock mix plays a key role in determining the magnitude and the spatial distribution of the water footprint in these regions. Compared with other potential feedstock, forest wood residue shows promise with its low blue and grey water footprint

    Water Embodied in Bioethanol in the United States

    Get PDF
    Prior studies have estimated that a liter of bioethanol requires 263−784 L of water from corn farm to fuel pump, but these estimates have failed to account for the widely varied regional irrigation practices. By using regional time-series agricultural and ethanol production data in the U.S., this paper estimates the state-level field-to-pump water requirement of bioethanol across the nation. The results indicate that bioethanol’s water requirements can range from 5 to 2138 L per liter of ethanol depending on regional irrigation practices. The results also show that as the ethanol industry expands to areas that apply more irrigated water than others, consumptive water appropriation by bioethanol in the U.S. has increased 246% from 1.9 to 6.1 trillion liters between 2005 and 2008, whereas U.S. bioethanol production has increased only 133% from 15 to 34 billion liters during the same period. The results highlight the need to take regional specifics into account when implementing biofuel mandates

    Life-cycle Water Quantity and Water Quality Implications of Biofuels

    Get PDF
    Water consumption and water quality continue to be key factors affecting environmental sustainability in biofuel production. This review covers the findings from biofuel water analyses published over the past 2 years to underscore the progress made, and to highlight advancements in understanding the interactions among increased production and water demand, water resource availability, and potential changes in water quality. We focus on two key areas: water footprint assessment and watershed modeling. Results revealed that miscanthus-, switchgrass-, and forest wood-based biofuels all have promising blue and grey water footprints. Alternative water resources have been explored for algae production, and challenges remain. A most noticeable improvement in the analysis of life-cycle water consumption is the adoption of geospatial analysis and watershed modeling to generate a spatially explicit water footprint at a finer scale (e.g., multi-state region, state, and county scales) to address the impacts of land use change and climate on the water footprint in a landscape with a mixed biofuel feedstock

    Production lot sizing with rework and fixed quantity deliveries

    Get PDF
    This paper is concerned with determination of the optimal lot size for an economic production quantity (EPQ) model with the reworking of random defective items and fixed quantity multiple deliveries. Classic EPQ model assumes continuous issuing policy for satisfying product demand and perfect quality production for all items produced. However, in real life vendor-buyer integrated production-inventory system, multi-delivery policy is used practically in lieu of the continuous issuing policy and generation of defective items during production run is inevitable. In this study, all nonconforming items produced are considered to be repairable and are reworked in each cycle when regular production ends. The finished items can only be delivered to customers if the whole lot is quality assured at the end of the rework. Fixed quantity multiple installments of the finished batch are delivered to customers at a fixed interval of time. The long-run average integrated cost function per unit time is derived. A closed-form optimal batch size solution to the problem is obtained. A numerical example demonstrates its practical usage

    Decay Constants of Pseudoscalar DD-mesons in Lattice QCD with Domain-Wall Fermion

    Get PDF
    We present the first study of the masses and decay constants of the pseudoscalar D D mesons in two flavors lattice QCD with domain-wall fermion. The gauge ensembles are generated on the 243×4824^3 \times 48 lattice with the extent Ns=16 N_s = 16 in the fifth dimension, and the plaquette gauge action at β=6.10 \beta = 6.10 , for three sea-quark masses with corresponding pion masses in the range 260475260-475 MeV. We compute the point-to-point quark propagators, and measure the time-correlation functions of the pseudoscalar and vector mesons. The inverse lattice spacing is determined by the Wilson flow, while the strange and the charm quark masses by the masses of the vector mesons ϕ(1020) \phi(1020) and J/ψ(3097) J/\psi(3097) respectively. Using heavy meson chiral perturbation theory (HMChPT) to extrapolate to the physical pion mass, we obtain fD=202.3(2.2)(2.6) f_D = 202.3(2.2)(2.6) MeV and fDs=258.7(1.1)(2.9) f_{D_s} = 258.7(1.1)(2.9) MeV.Comment: 15 pages, 3 figures. v2: the statistics of ensemble (A) with m_sea = 0.005 has been increased, more details on the systematic error, to appear in Phys. Lett.
    corecore