2,177 research outputs found

    A Proximity based Retransmission Scheme for Power Line Ad-hoc LAN

    Full text link
    Power line as an alternative for data transmission is being explored, and also being used to a certain extent. But from the data transfer point of view, power line, as a channel is highly dynamic and hence not quite suitable. To convert the office or home wiring system to a Local Area Network (LAN), adaptive changes are to be made to the existing protocols. In this paper, a slotted transmission scheme is suggested, in which usable timeslots are found out by physically sensing the media. Common usable timeslots for the sender-receiver pair are used for communication. But these will not ensure safe packet delivery since packets may be corrupted on the way during propagation from sender to receiver. Therefore, we also suggest a proximity based retransmission scheme where each machine in the LAN, buffers good packet and machines close to the receiver retransmit on receiving a NACK.Comment: Already published in IJDP

    A Simple, Approximate Method for Analysis of Kerr-Newman Black Hole Dynamics and Thermodynamics

    Get PDF
    In this work we present a simple, approximate method for analysis of the basic dynamical and thermodynamical characteristics of Kerr-Newman black hole. Instead of the complete dynamics of the black hole self-interaction we consider only such stable (stationary) dynamical situations determined by condition that black hole (outer) horizon circumference holds the integer number of the reduced Compton wave lengths corresponding to mass spectrum of a small quantum system (representing quant of the black hole self-interaction). Then, we show that Kerr-Newman black hole entropy represents simply the quotient of the sum of static part and rotation part of mass of black hole on the one hand and ground mass of small quantum system on the other hand. Also we show that Kerr-Newman black hole temperature represents the negative value of the classical potential energy of gravitational interaction between a part of black hole with reduced mass and small quantum system in the ground mass quantum state. Finally, we suggest a bosonic great canonical distribution of the statistical ensemble of given small quantum systems in the thermodynamical equilibrium with (macroscopic) black hole as thermal reservoir. We suggest that, practically, only ground mass quantum state is significantly degenerate while all other, excited mass quantum states are non-degenerate. Kerr-Newman black hole entropy is practically equivalent to the ground mass quantum state degeneration. Given statistical distribution admits a rough (qualitative) but simple modeling of Hawking radiation of the black hole too.Comment: 8 pages, no figure

    Encoding Higher Level Extensions of Petri Nets in Answer Set Programming

    Full text link
    Answering realistic questions about biological systems and pathways similar to the ones used by text books to test understanding of students about biological systems is one of our long term research goals. Often these questions require simulation based reasoning. To answer such questions, we need formalisms to build pathway models, add extensions, simulate, and reason with them. We chose Petri Nets and Answer Set Programming (ASP) as suitable formalisms, since Petri Net models are similar to biological pathway diagrams; and ASP provides easy extension and strong reasoning abilities. We found that certain aspects of biological pathways, such as locations and substance types, cannot be represented succinctly using regular Petri Nets. As a result, we need higher level constructs like colored tokens. In this paper, we show how Petri Nets with colored tokens can be encoded in ASP in an intuitive manner, how additional Petri Net extensions can be added by making small code changes, and how this work furthers our long term research goals. Our approach can be adapted to other domains with similar modeling needs
    corecore