8 research outputs found

    The Role of Microenvironment in Development of Skin Cancer and Metastasis

    Get PDF

    Different genetic mechanisms mediate spontaneous versus UVR-induced malignant melanoma

    Get PDF
    Genetic variation conferring resistance and susceptibility to carcinogen-induced tumorigenesis is frequently studied in mice. We have now turned this idea to melanoma using the collaborative cross (CC), a resource of mouse strains designed to discover genes for complex diseases. We studied melanoma-prone transgenic progeny across seventy CC genetic backgrounds. We mapped a strong quantitative trait locus for rapid onset spontaneous melanoma onset to Prkdc, a gene involved in detection and repair of DNA damage. In contrast, rapid onset UVR-induced melanoma was linked to the ribosomal subunit gene Rrp15. Ribosome biogenesis was upregulated in skin shortly after UVR exposure. Mechanistically, variation in the ‘usual suspects’ by which UVR may exacerbate melanoma, defective DNA repair, melanocyte proliferation, or inflammatory cell infiltration, did not explain melanoma susceptibility or resistance across the CC. Instead, events occurring soon after exposure, such as dysregulation of ribosome function, which alters many aspects of cellular metabolism, may be important

    Keratinocyte sonic hedgehog up-regulation drives the development of giant congenital nevi via paracrine endothelin-1 secretion

    Get PDF
    Giant congenital nevi are associated with clinical complications such as neurocutaneous melanosis and melanoma. Virtually nothing is known about why some individuals develop these lesions. We previously identified the sonic hedgehog (Shh) pathway regulator Cdon as a candidate nevus modifier gene. Here we validate this by studying Cdon knockout mice, and go on to establishing the mechanism by which Shh exacerbates nevogenesis. Cdon knockout mice develop blue nevi without the need for somatic melanocyte oncogenic mutation. In a mouse model carrying melanocyte NRAS, we found that strain backgrounds that carry genetic variants that cause increased keratinocyte Shh pathway activity, as measured by Gli1 and Gli2 expression, develop giant congenital nevi. Shh components are also active adjacent to human congenital nevi. Mechanistically, this exacerbation of nevogenesis is driven via the release of the melanocyte mitogen endothelin-1 from keratinocytes. We then suppressed nevus development in mice using Shh and endothelin antagonists. Our work suggests an aspect of nevus development whereby keratinocyte cytokines such as endothelin-1 can exacerbate nevogenesis, and provides potential therapeutic approaches for giant congenital nevi. Furthermore, it highlights the notion that germline genetic variation, in addition to somatic melanocyte mutation, can strongly influence the histopathological features of melanocytic nevi

    A mutation in the Cdon gene potentiates congenital nevus development mediated by NRASQ61K

    No full text
    Congenital nevi develop before birth and sometimes cover large areas of the body. They are presumed to arise from the acquisition of a gene mutation in an embryonic melanocyte that becomes trapped in the dermis during development. Mice bearing the Cdk4(R24c)::Tyr-NRAS(Q1K) transgenes develop congenital nevus-like lesions by post-natal day 10, from melanocytes escaping the confines of hair follicles. We interbred these mice with the collaborative cross (CC), a resource that enables identification of modifier genes for complex diseases (those where multiple genes are involved). We examined variation in nevus cell density in 66 CC strains and mapped a large-effect quantitative trait locus (QTL) controlling nevus cell density to murine chromosome 9. The best candidate for a gene that exacerbates congenital nevus development in the context of an NRAS mutation is Cdon, a positive regulator of sonic hedgehog (Shh) that is expressed mainly in keratinocytes

    Targeting adenosine in BRAF-mutant melanoma reduces tumor growth and metastasis

    No full text
    Increasing evidence exists for the role of immunosuppressive adenosine in promoting tumor growth and spread in a number of cancer types, resulting in poor clinical outcomes. In this study, we assessed whether the CD73-adenosinergic pathway is active in melanoma patients and whether adenosine restricts the efficacy of clinically approved targeted therapies for commonly mutated BRAF melanoma. In AJCC stage III melanoma patients, CD73 expression (the enzyme that generates adenosine) correlated significantly with patients presenting nodal metastatic melanoma, suggesting that targeting this pathway may be effective in advanced stage disease. In addition, dabrafenib and trametinib treatment of CD73 BRAF-mutant melanomas caused profound CD73 downregulation in tumor cells. Inhibition of BRAF and MEK in combination with the A2A adenosine receptor provided significant protection against tumor initiation and metastasis formation in mice. Our results suggest that targeting adenosine may enhance therapeutic responses for melanoma patients receiving targeted or immune-based therapies
    corecore