8 research outputs found
In vitro and in vivo validation of human and goat chondrocyte labeling by green fluorescent protein lentivirus transduction
We investigated whether human articular chondrocytes can be labeled efficiently and for long-term with a green fluorescent protein (GFP) lentivirus and whether the viral transduction would influence cell proliferation and tissue-forming capacity. The method was then applied to track goat articular chondrocytes after autologous implantation in cartilage defects. Expression of GFP in transduced chondrocytes was detected cytofluorimetrically and immunohistochemically. Chondrogenic capacity of chondrocytes was assessed by Safranin-O staining, immunostaining for type II collagen, and glycosaminoglycan content. Human articular chondrocytes were efficiently transduced with GFP lentivirus (73.4 +/- 0.5% at passage 1) and maintained the expression of GFP up to 22 weeks of in vitro culture after transduction. Upon implantation in nude mice, 12 weeks after transduction, the percentage of labeled cells (73.6 +/- 3.3%) was similar to the initial one. Importantly, viral transduction of chondrocytes did not affect the cell proliferation rate, chondrogenic differentiation, or tissue-forming capacity, either in vitro or in vivo. Goat articular chondrocytes were also efficiently transduced with GFP lentivirus (78.3 +/- 3.2%) and maintained the expression of GFP in the reparative tissue after orthotopic implantation. This study demonstrates the feasibility of efficient and relatively long-term labeling of human chondrocytes for co-culture on integration studies, and indicates the potential of this stable labeling technique for tracking animal chondrocytes for in cartilage repair studies
Biodegradation of Silk Biomaterials
Silk fibroin from the silkworm, Bombyx mori, has excellent properties such as biocompatibility, biodegradation, non-toxicity, adsorption properties, etc. As a kind of ideal biomaterial, silk fibroin has been widely used since it was first utilized for sutures a long time ago. The degradation behavior of silk biomaterials is obviously important for medical applications. This article will focus on silk-based biomaterials and review the degradation behaviors of silk materials
The Oncogene LRF Stimulates Proliferation of Mesenchymal Stem Cells and Inhibits Their Chondrogenic Differentiation
Objective. The oncogene leukemia/lymphoma-related factor (LRF) enhances chondrosarcoma proliferation and malignancy. This study aimed to investigate the roles of LRF in chondrogenic differentiation of primary human bone marrow–derived mesenchymal stem cells (BMSCs). Design. LRF was overexpressed in BMSC by lentiviral transduction. Chondrogenic differentiation of BMSC was induced by high-density pellet culture. Western blotting and real-time polymerase chain reaction were used to investigate changes in protein and mRNA levels, respectively, during chondrogenesis. Safranin-O staining, immunohistochemistry, and glycoaminoglycan contents were used to assess cartilage matrix deposition. BMSC proliferation was determined by mitochondrial dehydrogenase activity and cell counting. Cell cycle profiling was performed by flow cytometry. Results. LRF overexpression effectively inhibited protein and mRNA expression of chondrocyte markers and cartilage matrix deposition during chondrogenesis of BMSC. Endogenous LRF expression was constitutively high in undifferentiated BMSC but remained low in primary articular chondrocytes. Endogenous LRF protein was downregulated in a time-dependent manner during chondrogenesis. BMSCs overexpressing LRF had higher proliferation rates and cell population in the S phase. LRF suppressed p53 expression during chondrogenesis and this might prevent differentiating chondrocytes from entering a quiescent state. Conclusion. Our data showed that LRF is important for stimulating stem cell proliferation and cell cycle progression. It is known that LRF is highly expressed in the mouse limb buds prior to overt chondrogenesis; thus, LRF might function to prevent premature chondrogenic differentiation of stem cells
The Oncogene LRF Stimulates Proliferation of Mesenchymal Stem Cells and Inhibits Their Chondrogenic Differentiation.
ObjectiveThe oncogene leukemia/lymphoma-related factor (LRF) enhances chondrosarcoma proliferation and malignancy. This study aimed to investigate the roles of LRF in chondrogenic differentiation of primary human bone marrow-derived mesenchymal stem cells (BMSCs).DesignLRF was overexpressed in BMSC by lentiviral transduction. Chondrogenic differentiation of BMSC was induced by high-density pellet culture. Western blotting and real-time polymerase chain reaction were used to investigate changes in protein and mRNA levels, respectively, during chondrogenesis. Safranin-O staining, immunohistochemistry, and glycoaminoglycan contents were used to assess cartilage matrix deposition. BMSC proliferation was determined by mitochondrial dehydrogenase activity and cell counting. Cell cycle profiling was performed by flow cytometry.ResultsLRF overexpression effectively inhibited protein and mRNA expression of chondrocyte markers and cartilage matrix deposition during chondrogenesis of BMSC. Endogenous LRF expression was constitutively high in undifferentiated BMSC but remained low in primary articular chondrocytes. Endogenous LRF protein was downregulated in a time-dependent manner during chondrogenesis. BMSCs overexpressing LRF had higher proliferation rates and cell population in the S phase. LRF suppressed p53 expression during chondrogenesis and this might prevent differentiating chondrocytes from entering a quiescent state.ConclusionOur data showed that LRF is important for stimulating stem cell proliferation and cell cycle progression. It is known that LRF is highly expressed in the mouse limb buds prior to overt chondrogenesis; thus, LRF might function to prevent premature chondrogenic differentiation of stem cells
Enhanced Activity of Transforming Growth Factor beta 1 (TGF-beta 1) Bound to Cartilage Oligomeric Matrix Protein
Cartilage oligomeric matrix protein (COMP) is an important non-collagenous cartilage protein that is essential for the structural integrity of the cartilage extracellular matrix. The repeated modular structure of COMP allows it to "bridge" and assemble multiple cartilage extracellular matrix components such as collagens, matrilins, and proteoglycans. With its modular structure, COMP also has the potential to act as a scaffold for growth factors, thereby affecting how and when the growth factors are presented to cell-surface receptors. However, it is not known whether COMP binds growth factors. We studied the binding interaction between COMP and TGF-beta 1 in vitro and determined the effect of COMP on TGF-beta 1-induced signal transduction in reporter cell lines and primary cells. Our results demonstrate that mature COMP protein binds to multiple TGF-beta 1 molecules and that the peak binding occurs at slightly acidic pH. These interactions were confirmed by dual polarization interferometry and visualized by rotary shadow electron microscopy. There is cation-independent binding of TGF-beta 1 to the C-terminal domain of COMP. In the presence of manganese, an additional TGF-beta-binding site is present in the TSP3 repeats of COMP. Finally, we show that COMP-bound TGF-beta 1 causes increased TGF-beta 1-dependent transcription. We conclude that TGF-beta 1 binds to COMP and that TGF-beta 1 bound to COMP has enhanced bioactivity
Layer-by-Layer coated tyrosinase: An efficient and selective synthesis of catechols
Agaricus bisporous tyrosinase was immobilized on commercial available epoxy-resin Eupergit (R) C250L and then coated by the Layer-by-Layer method (LbL). The two novel heterogeneous biocatalysts were characterized for their morphology, pH and storage stability, kinetic properties (K-m, V-max, V-max/K-m) and reusability. These biocatalysts were used for the efficient and selective synthesis of bioactive catechols under mild and environmental friendly experimental conditions. Ascorbic acid was added in the reaction medium to inhibit the formation of ortho-quinones, thus avoiding the known enzyme suicide inactivation process. Catechols were obtained mostly in quantitative yields and conversion of substrate. Tyrosinase immobilized on Eupergit (R) C250L and coated by the LbL method showed better catalytic activities, higher pH and storage stability, and reusability with respect to immobilized uncoated tyrosinase. Since chemical procedures to synthesize catechols are often expensive and with high environmental impact, the use of immobilized tyrosinase represents an efficient alternative for the preparation of this family of bioactive compounds. (C) 2011 Elsevier Ltd. All rights reserved