57 research outputs found

    Medium-term Outcomes of Myocarditis and Pericarditis following BNT162b2 Vaccination among Adolescents in Hong Kong

    Get PDF
    In this study, we examined the clinical and electrophysiological outcomes of adolescents in Hong Kong who developed myocarditis or pericarditis following BNT162b2 vaccination for COVID-19, and followed-up for 60 to 180 days after their initial diagnosis. Clinical assessments included electrocardiogram (ECG) and echocardiogram at the initial admission and follow-up were compared. Treadmill testing was also performed in some cases. Between 14 June 2021 and 16 February 2022, 53 subjects were approached to participate in this follow-up study, of which 28 patients were followed up for >60 days with a median follow-up period of 100 days (range, 61-178 days) and were included in this study. On admission, 23 patients had ECG abnormalities but no high-grade atrioventricular block. Six patients had echocardiogram abnormalities, including reduced contractility, small rim pericardial effusions, and hyperechoic ventricular walls. All patients achieved complete recovery on follow-up. After discharge, 10 patients (35.7%) reported symptoms, including occasional chest pain, shortness of breath, reduced exercise tolerance, and recurrent vasovagal near-syncope. At follow-up, assessments, including ECGs, were almost all normal. Among the three patients with possible ECG abnormalities, all their echocardiograms or treadmill testings were normal. Sixteen patients (57.1%) underwent treadmill testing at a median of 117 days post-admission, which were also normal. However, at follow-up, there was a significant mean bodyweight increase of 1.81kg (95%CI 0.47-3.1 kg, p=0.01), possibly due to exercise restriction. In conclusion, most adolescents experiencing myocarditis and pericarditis following BNT162b2 vaccination achieved complete recovery. Some patients developed non-specific persistent symptoms, and bodyweight changes shall be monitored

    Validation of Statistical Models for Estimating Hospitalization Associated with Influenza and Other Respiratory Viruses

    Get PDF
    BACKGROUND: Reliable estimates of disease burden associated with respiratory viruses are keys to deployment of preventive strategies such as vaccination and resource allocation. Such estimates are particularly needed in tropical and subtropical regions where some methods commonly used in temperate regions are not applicable. While a number of alternative approaches to assess the influenza associated disease burden have been recently reported, none of these models have been validated with virologically confirmed data. Even fewer methods have been developed for other common respiratory viruses such as respiratory syncytial virus (RSV), parainfluenza and adenovirus. METHODS AND FINDINGS: We had recently conducted a prospective population-based study of virologically confirmed hospitalization for acute respiratory illnesses in persons <18 years residing in Hong Kong Island. Here we used this dataset to validate two commonly used models for estimation of influenza disease burden, namely the rate difference model and Poisson regression model, and also explored the applicability of these models to estimate the disease burden of other respiratory viruses. The Poisson regression models with different link functions all yielded estimates well correlated with the virologically confirmed influenza associated hospitalization, especially in children older than two years. The disease burden estimates for RSV, parainfluenza and adenovirus were less reliable with wide confidence intervals. The rate difference model was not applicable to RSV, parainfluenza and adenovirus and grossly underestimated the true burden of influenza associated hospitalization. CONCLUSION: The Poisson regression model generally produced satisfactory estimates in calculating the disease burden of respiratory viruses in a subtropical region such as Hong Kong

    Seasonal effects of influenza on mortality in a subtropical city

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Influenza has been associated with a heavy burden of mortality. In tropical or subtropical regions where influenza viruses circulate in the community most of the year, it is possible that there are seasonal variations in the effects of influenza on mortality, because of periodic changes in environment and host factors as well as the frequent emergence of new antigenically drifted virus strains. In this paper we explored this seasonal effect of influenza.</p> <p>Methods</p> <p>A time-varying coefficient Poisson regression model was fitted to the weekly numbers of mortality of Hong Kong from 1996 to 2002. Excess risks associated with influenza were calculated to assess the seasonal effects of influenza.</p> <p>Results</p> <p>We demonstrated that the effects of influenza were higher in winter and late spring/early summer than other seasons. The two-peak pattern of seasonal effects of influenza was found for cardio-respiratory disease and sub-categories pneumonia and influenza, chronic obstructive pulmonary disease, cerebrovascular diseases and ischemic heart disease as well as for all-cause deaths.</p> <p>Conclusion</p> <p>The results provide insight into the possibility that seasonal factors may have impact on virulence of influenza besides their effects on virus transmission. The results warrant further studies into the mechanisms behind the seasonal effect of influenza.</p

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Beyond the Gates of Euclidean Space: Temporal-Discrimination-Fusions and Attention-based Graph Neural Network for Human Activity Recognition

    Full text link
    Human activity recognition (HAR) through wearable devices has received much interest due to its numerous applications in fitness tracking, wellness screening, and supported living. As a result, we have seen a great deal of work in this field. Traditional deep learning (DL) has set a state of the art performance for HAR domain. However, it ignores the data's structure and the association between consecutive time stamps. To address this constraint, we offer an approach based on Graph Neural Networks (GNNs) for structuring the input representation and exploiting the relations among the samples. However, even when using a simple graph convolution network to eliminate this shortage, there are still several limiting factors, such as inter-class activities issues, skewed class distribution, and a lack of consideration for sensor data priority, all of which harm the HAR model's performance. To improve the current HAR model's performance, we investigate novel possibilities within the framework of graph structure to achieve highly discriminated and rich activity features. We propose a model for (1) time-series-graph module that converts raw data from HAR dataset into graphs; (2) Graph Convolutional Neural Networks (GCNs) to discover local dependencies and correlations between neighboring nodes; and (3) self-attention GNN encoder to identify sensors interactions and data priorities. To the best of our knowledge, this is the first work for HAR, which introduces a GNN-based approach that incorporates both the GCN and the attention mechanism. By employing a uniform evaluation method, our framework significantly improves the performance on hospital patient's activities dataset comparatively considered other state of the art baseline methods

    Direct Detection of Enterovirus 71 (EV71) in Clinical Specimens from a Hand, Foot, and Mouth Disease Outbreak in Singapore by Reverse Transcription-PCR with Universal Enterovirus and EV71-Specific Primers

    No full text
    A recent outbreak of hand, foot, and mouth disease in Singapore in 2000 affected several thousand children and resulted in four deaths. The aim of this study was to determine the applicability of reverse transcription-PCR (RT-PCR) with universal pan-enterovirus primers and enterovirus 71 (EV71) type-specific primers for the direct detection of enteroviruses in clinical specimens derived from this outbreak. With the universal primers, EV71 RNA sequences were successfully detected by RT-PCR and direct sequencing in 71% of positive specimens. Three pairs of EV71 type-specific primers were evaluated for rapid detection of EV71 directly from clinical specimens and cell culture isolates. By using a seminested RT-PCR strategy, specific identification of EV71 sequences directly in clinical specimens was achieved, with a detection rate of 53%. In contrast, cell culture could isolate EV71 in only 20% of positive specimens. EV71 was detected directly from brain, heart, and lung specimens of two deceased siblings. Although more than one type of enterovirus was identified in clinical specimens from this outbreak, 90% of the enteroviruses were confirmed as EV71. The data demonstrate the clinical applicability of pan-enterovirus and seminested RT-PCR for the detection of EV71 RNA directly from clinical specimens in an outbreak situation
    corecore