212 research outputs found
Observation of Single Transits in Supercooled Monatomic Liquids
A transit is the motion of a system from one many-particle potential energy
valley to another. We report the observation of transits in molecular dynamics
(MD) calculations of supercooled liquid argon and sodium. Each transit is a
correlated simultaneous shift in the equilibrium positions of a small local
group of particles, as revealed in the fluctuating graphs of the particle
coordinates versus time. This is the first reported direct observation of
transit motion in a monatomic liquid in thermal equilibrium. We found transits
involving 2 to 11 particles, having mean shift in equilibrium position on the
order of 0.4 R_1 in argon and 0.25 R_1 in sodium, where R_1 is the nearest
neighbor distance. The time it takes for a transit to occur is approximately
one mean vibrational period, confirming that transits are fast.Comment: 19 pages, 8 figure
How many trafficked people are there in Greater New Orleans? lessons in measurement
In an effort to develop a model for estimating prevalence in a city or region of the United States, this study employed Multiple Systems Estimation, a statistical approach that uses data on known cases collected from individual agencies to estimate the number not known, with the ultimate aim of estimating the prevalence of trafficking in a region. Utilizing de-identified data provided by local non-profits and law enforcement agencies, the researchers estimated the prevalence of trafficking in the New Orleans-Metairie metropolitan statistical area. This represents one of the first attempts to use Multiple Systems Estimation to quantify human trafficking in a United States context. The article provides an account of the impediments to and limitations of conducting such an estimate, given the definitional variance and political dynamics that are endemic to anti-trafficking efforts in the United States. The authors provide recommendations for data collection and prevalence analysis that could be applied in other cities or regions of the United States as well as in other similarly-resourced environments
Dynamics of monatomic liquids
We present a theory of the dynamics of monatomic liquids built on two basic
ideas: (1) The potential surface of the liquid contains three classes of
intersecting nearly-harmonic valleys, one of which (the ``random'' class)
vastly outnumbers the others and all whose members have the same depth and
normal mode spectrum; and (2) the motion of particles in the liquid can be
decomposed into oscillations in a single many-body valley, and nearly
instantaneous inter-valley transitions called transits. We review the
thermodynamic data which led to the theory, and we discuss the results of
molecular dynamics (MD) simulations of sodium and Lennard-Jones argon which
support the theory in more detail. Then we apply the theory to problems in
equilibrium and nonequilibrium statistical mechanics, and we compare the
results to experimental data and MD simulations. We also discuss our work in
comparison with the QNM and INM research programs and suggest directions for
future research.Comment: 53 pages, 16 figures. Differs from published version in using
American English spelling and grammar (published version uses British
English
Liquid state properties from first principles DFT calculations: Static properties
In order to test the Vibration-Transit (V-T) theory of liquid dynamics, ab
initio density functional theory (DFT) calculations of thermodynamic properties
of Na and Cu are performed and compared with experimental data. The
calculations are done for the crystal at T = 0 and T_m, and for the liquid at
T_m. The key theoretical quantities for crystal and liquid are the structural
potential and the dynamical matrix, both as function of volume. The theoretical
equations are presented, as well as details of the DFT computations. The
properties compared with experiment are the equilibrium volume, the isothermal
bulk modulus, the internal energy and the entropy. The agreement of theory with
experiment is uniformly good. Our primary conclusion is that the application of
DFT to V-T theory is feasible, and the resulting liquid calculations achieve
the same level of accuracy as does ab initio lattice dynamics for crystals.
Moreover, given the well established reliability of DFT, the present results
provide a significant confirmation of V-T theory itself.Comment: 9 pages, 3 figures, 5 tables, edited to more closely match published
versio
The just meaningful difference in speech-to-noise ratio
The speech-to-noise ratio (SNR) in an environment plays a vital role in speech communication for both normal-hearing (NH) and hearing-impaired (HI) listeners. While hearing-assistance devices attempt to deliver as favorable an SNR as possible, there may be discrepancies between noticeable and meaningful improvements in SNR. Furthermore, it is not clear how much of an SNR improvement is necessary to induce intervention-seeking behavior. Here we report on a series of experiments examining the just-meaningful difference (JMD) in SNR. All experiments used sentences in same-spectrum noise, with two intervals on each trial mimicking examples of pre- and post-benefit situations. Different groups of NH and HI adults were asked (a) to rate how much better or worse the change in SNR was in a number of paired examples, (b) if they would swap the worse for the better SNR (e.g., their current device for another) or (c) if they would be willing to go to the clinic for the given increase in SNR. The mean SNR JMD based on better/worse ratings (one arbitrary unit) was similar to the just-noticeable difference, approximately 3 dB. However, the mean SNR JMD for the more clinically relevant tasks -- willingness (at least 50% of the time) to swap devices or attend the clinic for a change in SNR -- was 6-8 dB regardless of hearing ability. This SNR JMD of the order of 6 dB provides a new benchmark, indicating the SNR improvement necessary to immediately motivate participants to seek intervention
Lattice Dynamics and the High Pressure Equation of State of Au
Elastic constants and zone-boundary phonon frequencies of gold are calculated
by total energy electronic structure methods to twofold compression. A
generalized force constant model is used to interpolate throughout the
Brillouin zone and evaluate moments of the phonon distribution. The moments are
used to calculate the volume dependence of the Gruneisen parameter in the fcc
solid. Using these results with ultrasonic and shock data, we formulate the
complete free energy for solid Au. This free energy is given as a set of closed
form expressions, which are valid to compressions of at least V/V_0 = 0.65 and
temperatures up to melting. Beyond this density, the Hugoniot enters the
solid-liquid mixed phase region. Effects of shock melting on the Hugoniot are
discussed within an approximate model. We compare with proposed standards for
the equation of state to pressures of ~200 GPa. Our result for the room
temperature isotherm is in very good agreement with an earlier standard of
Heinz and Jeanloz.Comment: 13 pages, 8 figures. Accepted by Phys. Rev.
V-T Theory of Self Dynamic Response in a Monatomic Liquid
A new theoretical model for self dynamic response is developed using
Vibration-Transit (V-T) theory, and is applied to liquid sodium at all
wavevectors q from the hydrodynamic regime to the free particle limit. In this
theory the zeroth-order Hamiltonian describes the vibrational motion in a
single random valley harmonically extended to infinity. This Hamiltonian is
tractable, is evaluated a priori for monatomic liquids, and the same
Hamiltonian (the same set of eigenvalues and eigenvectors) is used for
equilibrium and nonequlibrium theory. Here, for the self intermediate
scattering function Fself(q,t) we find the vibrational contribution is in near
perfect agreement with molecular dynamics (MD) through short and intermediate
times, at all q. This is direct confirmation that normal mode vibrational
correlations are present in the motion of the liquid state. The primary transit
effect is diffusive motion of the vibrational equilibrium positions, as the
liquid transits rapidly among random valleys. This motion is modeled as a
standard random walk, and the resulting theoretical Fself(q,t) is in excellent
agreement with MD results at all q and t. In the limit for q to infinity, the
theory automatically exhibits the correct approach to the free-particle limit.
Also in the limit for q to zero, the hydrodynamic limit emerges as well. In
contrast to the benchmark theories of generalized hydrodynamics and mode
coupling, the present theory is near a priori, while achieving modestly better
accuracy. Therefore, in our view, it constitutes an improvement over the
traditional theories.Comment: 16 pages, 11 figures, Journal Paper. Following referee's comments,
Section IID has been completely rewritten and a new Section IIE has been
adde
Auditory and cognitive training for cognition in adults with hearing loss: a systematic review and meta-analysis
This systematic review and meta-analysis examined the efficacy of auditory training and cognitive training to improve cognitive function in adults with hearing loss. A literature search of academic databases (e.g., MEDLINE, Scopus) and gray literature (e.g., OpenGrey) identified relevant articles published up to January 25, 2018. Randomized controlled trials (RCTs) or repeated measures designs were included. Outcome effects were computed as Hedge’s g and pooled using random-effects meta-analysis (PROSPERO: CRD42017076680). Nine studies, five auditory training, and four cognitive training met the inclusion criteria. Following auditory training, the pooled effect was small and statistically significant for both working memory (g = 0.21; 95% CI [0.05, 0.36]) and overall cognition (g = 0.19; 95% CI [0.07, 0.31]). Following cognitive training, the pooled effect for working memory was small and statistically significant (g = 0.34; 95% CI [0.16, 0.53]), and the pooled effect for overall cognition was large and significant (g = 1.03; 95% CI [0.41, 1.66]). However, this was dependent on the classification of training approach. Sensitivity analyses revealed no statistical difference between the effectiveness of auditory and cognitive training for improving cognition upon removal of a study that used a combined auditory–cognitive approach, which showed a very large effect. Overall certainty in the estimation of effect was “low” for auditory training and “very low” for cognitive training. High-quality RCTs are needed to determine which training stimuli will provide optimal conditions to improve cognition in adults with hearing loss
Internet of Things for Sustainability: Perspectives in Privacy, Cybersecurity, and Future Trends
In the sustainability IoT, the cybersecurity risks to things, sensors, and monitoring systems are distinct from the conventional networking systems in many aspects. The interaction of sustainability IoT with the physical world phenomena (e.g., weather, climate, water, and oceans) is mostly not found in the modern information technology systems. Accordingly, actuation, the ability of these devices to make changes in real world based on sensing and monitoring, requires special consideration in terms of privacy and security. Moreover, the energy efficiency, safety, power, performance requirements of these device distinguish them from conventional computers systems. In this chapter, the cybersecurity approaches towards sustainability IoT are discussed in detail. The sustainability IoT risk categorization, risk mitigation goals, and implementation aspects are analyzed. The openness paradox and data dichotomy between privacy and sharing is analyzed. Accordingly, the IoT technology and security standard developments activities are highlighted. The perspectives on opportunities and challenges in IoT for sustainability are given. Finally, the chapter concludes with a discussion of sustainability IoT cybersecurity case studies
- …