95 research outputs found

    Fine-Tuning of Mast Cell Activation by FcεRIβ Chain

    Get PDF
    Mast cells play a key role in allergic reaction and disorders through the high affinity receptor for IgE (FcεRI) which is primarily activated by IgE and antigen complex. In humans, mast cells express two types of FcεRI on the cell surface, tetrameric αβγ2 and trimeric αγ2, whereas in mice, the tetrameric αβγ2 type is exclusively expressed. In human allergic inflammation lesions, mast cells increase in number and preferentially express the αβγ2 type FcεRI. By contrast, in the lesion of non-allergic inflammation, mast cells mainly express the αγ2type. Since the β chain amplifies the expression and signaling of FcεRI, mast cell effector functions and allergic reaction in vivo are enhanced in the presence of the β chain. In contrast, a truncated β chain-isoform (βT) inhibits FcεRI surface expression. The human FcεRIβ gene contains seven exons and a repressor element located in the forth intron, through which FcεRIβ transcription is repressed in the presence of GM-CSF. Regarding the additional signal regulatory function of the β chain, the β chain ITAM has dual (positive and negative) functions in the regulation of the mast cell activation. Namely, the FcεRIβ chain ITAM enhances the mast cell activation signal triggered by a low-intensity (weak) stimulation whereas it suppresses the signal triggered by high-intensity (strong) stimulation. In an oxazolone-induced mouse CHS model, IgE-mediated mast cell activation is required and the β chain ITAM is crucially involved. Adenosine receptor, one of the GPCRs, triggers a synergistic degranulation response with FcεRI in mast cells, for which the β chain ITAM critically plays positive role, possibly reflecting the in vivo allergic response. These regulatory functions of the FcεRIβ ITAM finely tune FcεRI-induced mast cell activation depending on the stimulation strength, enabling the FcεRIβ chain to become a potential molecular target for the development of new strategies for therapeutic interventions for allergies

    Distinct contribution of Fc receptors and angiotensin II-dependent pathways in anti-GBM glomerulonephritis

    Get PDF
    Distinct contribution of Fc receptors and angiotensin II-dependent pathways in anti-GBM glomerulonephritis.BackgroundThe contribution of antibody and/or immune-complex to the pathogenesis of immunologically-mediated glomerulonephritis is not fully understood, although it has been recently clarified that Fc receptors (FcRs) play critical roles in the inflammatory cascade. We therefore re-evaluated the classical model of glomerulonephritis, anti-glomerular basement membrane antibody-induced glomerulonephritis (Anti-GBM GN), from the standpoint of FcRs and also investigated the residual FcR-independent mechanisms.MethodsWe adopted an Anti-GBM GN mouse model that has two strains deficient in the FcR γ chain [γ(-/-)] or FcγRIIB [RII(-/-)], and analyzed functional (urinary protein, serum creatinine, BUN) and pathological changes of the glomeruli. For the analyses of FcR-independent mechanisms, several doses of nephrotoxic serum were applied, and then mice were treated either with cobra venom factor or an angiotensin II type 1 receptor antagonist in γ(-/-) mice.ResultsIn γ(-/-) mice, renal injuries were dramatically attenuated with an absence of polymorphonuclear cell (PMN) influx, while RII(-/-) mice suffered accelerated glomerular injuries in spite of a normal PMN influx. In the absence of FcR-dependent effects in γ(-/-) mice, the FcR-independent pathway lead to chronic renal damage characterized by mesangial proliferation and progressive expansion of mesangial area, with monocyte/macrophage accumulation and with the expression of α smooth muscle actin in the mesangial cells and interstitium. Those injuries in γ(-/-) mice were not attenuated by the decomplementation, but completely abolished by using an angiotensin II type 1 receptor antagonist.ConclusionsOur results clearly demonstrate that FcRs play a pivotal role in Anti-GBM GN, especially in its acute phase. We further clarified the existence of FcR and complement-independent but antibody-dependent pathway. Furthermore, we found that those pathological changes were strongly related to the renin-angiotensin system

    Targeting of MIST to Src-family kinases via SKAP55–SLAP-130 adaptor complex in mast cells11The rat SKAP55 cDNA nucleotide sequence has been deposited in DDBJ database under accession number AB092812.

    Get PDF
    AbstractMIST (mast cell immunoreceptor signal transducer; also termed Clnk) is an adaptor protein structurally related to SLP-76-family hematopoietic cell-specific adaptor proteins. We demonstrate here that two major MIST-associated phosphoproteins expressed in mast cell lines are SLAP-130 and SKAP55, adaptors known to interact with the Src-homology (SH) 2 domain of Src-family protein tyrosine kinases (PTKs). MIST directly associated with SLAP-130 via its SH2 domain, and collaboration of SLAP-130 with SKAP55 was required for the recruitment of MIST to Lyn. Furthermore, MIST was preferentially recruited to Fyn rather than Lyn, which is regulated by higher affinity binding of SLAP-130 and SKAP55 with the Fyn-SH2 domain than the Lyn-SH2 domain. Our results suggest that the MIST–SLAP-130–SKAP55 adaptor complex functions downstream of high-affinity IgE receptor-associated Src-PTKs in mast cells

    The High Affinity IgE Receptor (FcεRI) as a Target for Anti-allergic Agents

    No full text
    Prevention of the effector cell activation via high affinity IgE receptor (FcεRI) is thought to be a straightforward strategy for suppressing the allergic reaction. Among the numerous methods to prevent the activation through FcεRI, three versions are described in this article. The first and second ideas involve inhibition of binding between FcεRI and IgE with a soluble form of the FceRI α chain and a humanized antibody directed against the a chain, respectively. Both of these paths involve suppression the histamine release from human peripheral blood basophils in vitro. They also inhibited the allergic reaction in vivo. The soluble α inhibited the anaphylactic reaction in rodents and the Fab fragments of the humanized anti-FcεRI α chain antibody suppressed the dermal response in rhesus monkeys. The third idea involves repression of FcεRI expression by suppressing the transcription of the genes encoding the subunits of FceRI. Although no plausible candidate molecule for actualizing this idea can be identified at present, further analyses of the transcriptional regulatory mechanisms in the human FcεRI α and β chain genes will lead to the discovery of novel targets for developing anti-allergic agents

    C/EBPα and Ets Protein Family Members Regulate the Human Myeloid IgA Fc Receptor ( FcαR

    No full text

    Targeting Human Mast Cells Expressing G-Protein-Coupled Receptors in Allergic Diseases

    Get PDF
    The G-protein-coupled receptors (GPCRs) are the largest known group of integral membrane receptor proteins and are the most common targets of pharmacotherapy. Mast cells (MCs) have been reported to play an important role in allergic diseases, such as urticaria and bronchial asthma. There is an increasing body of clinical evidence that MCs are recruited into allergic reactions by non-IgE-dependent mechanisms. Human MCs are activated and secrete histamine in response to neuropeptides, such as substance P and somatostatin, mediated by a GPCR, MRGX2. The microenvironment surrounding MCs in their resident tissues is likely to contain multiple factors that modify antigen-dependent MC activation. MCs express various GPCRs, and since the function of human MCs is modulated by various GPCR ligands, such as adenosine and sphingosine-1-phosphate, which are present in high levels in the bronchial alveolar lavage fluid of asthmatic patients, the GPCRs expressed on MCs may play an important role in human allergic diseases. The GPCRs expressed on MCs may serve as drug targets for the treatment of allergic diseases
    corecore