27 research outputs found
Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals
Gout is a common arthritis caused by elevated serum uric acid (SUA) levels. Here we investigated loci influencing SUA in a genome-wide meta-analysis with 121,745 Japanese subjects. We identified 8948 variants at 36 genomic loci (P<5 × 10–8) including eight novel loci. Of these, missense variants of SESN2 and PNPLA3 were predicted to be damaging to the function of these proteins; another five loci—TMEM18, TM4SF4, MXD3-LMAN2, PSORS1C1-PSORS1C2, and HNF4A—are related to cell metabolism, proliferation, or oxidative stress; and the remaining locus, LINC01578, is unknown. We also identified 132 correlated genes whose expression levels are associated with SUA-increasing alleles. These genes are enriched for the UniProt transport term, suggesting the importance of transport-related genes in SUA regulation. Furthermore, trans-ethnic meta-analysis across our own meta-analysis and the Global Urate Genetics Consortium has revealed 15 more novel loci associated with SUA. Our findings provide insight into the pathogenesis, treatment, and prevention of hyperuricemia/gout
On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective
Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10’s of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation
Recommended from our members
A pristine record of outer Solar System materials from asteroid Ryugu’s returned sample
Volatile and organic-rich C-type asteroids may have been one of the main sources of Earth’s water. Our best insight into their chemistry is currently provided by carbonaceous chondritic meteorites, but the meteorite record is biased: only the strongest types survive atmospheric entry and are then modified by interaction with the terrestrial environment. Here we present the results of a detailed bulk and microanalytical study of pristine Ryugu particles, brought to Earth by the Hayabusa2 spacecraft. Ryugu particles display a close compositional match with the chemically unfractionated, but aqueously altered, CI (Ivuna-type) chondrites, which are widely used as a proxy for the bulk Solar System composition. The sample shows an intricate spatial relationship between aliphatic-rich organics and phyllosilicates and indicates maximum temperatures of ~30 °C during aqueous alteration. We find that heavy hydrogen and nitrogen abundances are consistent with an outer Solar System origin. Ryugu particles are the most uncontaminated and unfractionated extraterrestrial materials studied so far, and provide the best available match to the bulk Solar System composition
A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu
Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (–OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss
〈Original〉Atorvastatin promoted in vitro angiogenesis by reduction of geranylgeranyl pyrophosphate in a dose-dependent manner and protected against rho kinase-mediated endothelial cell damage caused by thromboxane A2
[Abstract]Background: Atorvastatin can inactivate Rho/Rho kinase via a reduction in the synthesis of geranylgeranyl pyrophosphate (GGPP).Thromboxane A2 (TxA2) causes endothelial cell (EC) apoptosis via Rho/Rho kinase activation.We tested the hypothesis that atorvastatin protects against the Rho kinase-mediated anti-angiogenic effect of TxA2. Methods: We used human coronary artery ECs to form tubular structures on plates coated with a basement membrane matrix gel. The number of tubular structure was counted under a microscope. The caspase-3 activity was used as a determinant of apoptosis.Results: Atorvastatin significantly increased the number of tubes in a dose-dependent manner, and this effect was blocked by mevalonate or geranylgeranyl pyrophosphate (GGPP). Similar to atorvastatin, a potent selective inhibitor of geranylgeranyl transferase type I enhanced tubular formation. A TxA2 mimetic (IBOP) inhibited formation of EC tubular structures. The inhibitory effect was completely blocked by a TxA2 antagonist (SQ29548), a Rho kinase inhibitor (Y27632), and by atorvastatin. The IBOP-induced increase in caspase-3 activity was attenuated by atorvastatin. Conclusions: Atorvastatin promoted in vitro angiogenesis of ECs in a dose-dependent manner and reversed the TxA2 receptor-mediated antiangiogenic effect. We suggest that reduction of GGPP and inactivation of Rho kinase plays an important role in the proangiogenic effect of atorvastatin