58 research outputs found

    Atomic Force Microscopy of Instabilities and Reorganization of Langmuir-Blodgett Films

    No full text
    The atomic force microscope was used to show that Langmuir-Blodgett films are unstable to reorganization via a folding mechanism by which uniformly thick films spontaneously form holes and multilayer steps. These bilayer step defects originate at isolated sites and quickly spread to cover the entire film. The defects retain the sixfold symmetry of the underlying molecular lattice; after sufficient time, straight edges begin to form and the entire film is comprised of high islands with straight edges aligned with sixfold symmetry. The kinetics of the reorganization depend strongly on the chain length of the fatty acid used and the nature of the substrate. The results suggest that the reorganization is driven by an interconversion of strained, asymmetric monolayers to unstrained, centrosymmetric bilayers

    Towards tailored communication networks in assemblies of artificial cells

    Full text link
    Living Technology is researching novel IT making strong use of programmable chemical systems. These chemical systems shall finally converge to artificial cells resulting in evolvable complex information systems. We focus on procedural manageability and information processing capabilities of such information systems. Here, we present a novel resource-saving formation, processing, and examination procedure to generate and handle single compartments representing preliminary stages of artificial cells. Its potential is exemplified by testing the influence of different glycerophospholipids on the stability of the compartments. We discuss how the procedure could be used both in evolutionary optimization of self-assembling amphiphilic systems and in engineering tailored communication networks enabling life-like information processing in multicompartment aggregates of programmable composition and spatial configuration
    corecore