2 research outputs found

    Short vs. long-distance avocado supply chains: Life cycle assessment Impact associated to transport and effect of fruit origin and supply conditions chain on primary and secondary metabolites

    Get PDF
    Avocado consumption and trade are increasing worldwide, with North America and Europe being the main importing regions. Spain is the major European avocado producer (90% of the production), yet it only supplies 10% of the market. Consequently, more than 90% of the avocados consumed in Europe are imported from overseas, mainly from Chile and Peru. In this work, the Life Cycle Assessment (LCA) impact associated with the transport of two avocado supply chains (short (Spanish) and long (Chilean)) and the effect of the fruit origin and distance of both chains on primary and secondary metabolites from harvest to edible ripeness were evaluated using a gas chromatography-mass spectrometry (GC-MS) and liquid chromatography coupled to diode array detection (LC-DAD) based metabolite analysis. The LCA transport impact of the fresh supply chain from production centers in Chile (Quillota) and Spain (Malaga), and then the distribution to several cities in Europe, suggested road export from Spain to European capitals to have the lowest impact (0.14 to 0.22 kg CO2 eq/kg of avocado). When export from Chile was considered, the option of oceanic freight to European ports closer to final destinations was clearly a better option (0.21 to 0.26 kg CO2 eq/kg) than via the Algeciras port in Spain followed by road transport to final destinations in European capitals (0.34 to 0.43 kg CO2 eq/kg), although the situation could be somewhat different if the avocados are transported from the destination ports in northern Europe to long-distance capitals in other European countries. Fruit origin had a significant impact on avocado primary and secondary metabolites. The conditions of the supply chain itself (10 d in cold storage in regular conditions vs. 30 d cold storage + controlled atmosphere conditions) largely influence the fate of some metabolites that certainly affect the pool of metabolites at edible ripeness. The long-assumed hypothesis that the longer the supply chain the more negative impact on nutritional and functional compounds might not hold in this case, as long as transport conditions are adequate in terms of temperature, atmosphere conditions, and time considering distance from origin to destination.This research was funded by Fondecyt Nº 1180303 and REDBIO0001 PCI from ANID (Chile) and for the RTI2018-099139-B-C21 from Ministry of Science and Innovation (Spain)—National Research Agency (MCIN/AEI/10.13039/501100011033) and by “ERDF A way of making Europe”, of the European Union. R. Pedreschi and E. Aguayo are thankful to the grant of Fundación Séneca (Murcia, Spain) through the “Jiménez de la Espada” Program of Visiting Researchers. This research was partially supported by the grant VRIEA-PUCV Nº 039.436/2020

    Optimisation of extraction of piceatannol from Rhodomyrtus tomentosaseeds using response surface methodology

    Get PDF
    The extraction of piceatannol from the sim fruit (Rhodomyrtus tomentosa) was optimised. Firstly, the piceatannol content was determined in the different parts of the fruit (skin, pulp, and seed) and indicated that 94.20% of the piceatannol content was associated to the seeds, which were chosen as starting material to optimise the piceatannol extraction. A second-order polynomial model with three important variables (ethanol concentration, temperature and extraction time) was used. A rotatable central composite design consisting of 21 experimental runs with three replicates at the centre point was applied to describe the experimental data, i.e. the sim seed apparent piceatannol content. The experimental results fitted well to the model (R2 = 0.9647). The optimised conditions were 78.8% ethanol, 85.3 C and an extraction time of 78.8 min. Four extractions were performed in parallel at the optimal conditions to validate the model. The experimental value agreed with the predicted value (p < 0.05)
    corecore