2 research outputs found

    Isolation of feline islets of Langerhans by selective osmotic shock produces glucose responsive islets

    No full text
    IntroductionPancreatic islet isolation is essential for studying islet physiology, pathology, and transplantation, and feline islets could be an important model for human type II diabetes mellitus (T2D). Traditional isolation methods utilizing collagenases inflict damage and, in cats, may contribute to the difficulty in generating functional islets, as demonstrated by glucose-stimulated insulin secretion (GSIS). GLUT2 expression in β cells may allow for adaptation to hyperosmolar glucose solutions while exocrine tissue is selectively disrupted.MethodsHere we developed a protocol for selective osmotic shock (SOS) for feline islet isolation and evaluated the effect of different hyperosmolar glucose concentrations (300 mmol/L and 600 mmol/L) and incubation times (20 min and 40 min) on purity, morphology, yield, and GSIS.ResultsAcross protocol treatments, islet yield was moderate and morphology excellent. The treatment of 600 mmol/L glucose solution with 20 min incubation resulted in the highest stimulation index by GSIS.DiscussionGlucose responsiveness was demonstrated, permitting future in vitro studies. This research opens avenues for understanding feline islet function and transplantation possibilities and enables an additional islet model for T2D

    Both Feline Coronavirus Serotypes 1 and 2 Infected Domestic Cats Develop Cross-Reactive Antibodies to SARS-CoV-2 Receptor Binding Domain: Its Implication to Pan-CoV Vaccine Development

    No full text
    The current study was initiated when our specific-pathogen-free laboratory toms developed unexpectedly high levels of cross-reactive antibodies to human SARS-CoV-2 (SCoV2) receptor binding domain (RBD) upon mating with feline coronavirus (FCoV)-positive queens. Multi-sequence alignment analyses of SCoV2 Wuhan RBD and four strains each from FCoV serotypes 1 and 2 (FCoV1 and FCoV2) demonstrated an amino acid sequence identity of 11.5% and a similarity of 31.8% with FCoV1 RBD (12.2% identity and 36.5% similarity for FCoV2 RBD). The sera from toms and queens cross-reacted with SCoV2 RBD and reacted with FCoV1 RBD and FCoV2 spike-2, nucleocapsid, and membrane proteins, but not with FCoV2 RBD. Thus, the queens and toms were infected with FCoV1. Additionally, the plasma from six FCoV2-inoculated cats reacted with FCoV2 and SCoV2 RBDs, but not with FCoV1 RBD. Hence, the sera from both FCoV1-infected cats and FCoV2-infected cats developed cross-reactive antibodies to SCoV2 RBD. Furthermore, eight group-housed laboratory cats had a range of serum cross-reactivity to SCoV2 RBD even 15 months later. Such cross-reactivity was also observed in FCoV1-positive group-housed pet cats. The SCoV2 RBD at a high non-toxic dose and FCoV2 RBD at a 60–400-fold lower dose blocked the in vitro FCoV2 infection, demonstrating their close structural conformations essential as vaccine immunogens. Remarkably, such cross-reactivity was also detected by the peripheral blood mononuclear cells of FCoV1-infected cats. The broad cross-reactivity between human and feline RBDs provides essential insights into developing a pan-CoV vaccine
    corecore