2,601 research outputs found

    Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns †

    Get PDF
    Electrowetting-on-dielectric (EWOD) promises to be an important lab-on-a-chip approach for effectively manipulating droplets with electric field-controlled surface tension. Droplets manipulated in electrowetting-based devices are typically sandwiched between two parallel plates and actuated by digital electrodes. The size of pixilated electrodes limits the minimum droplet size that can be manipulated. Here, we report on a single-sided continuous optoelectrowetting (SCOEW) mechanism that enables light-patterned electrowetting modulation for continuous droplet manipulation on an open, featureless, and photoconductive surface. SCOEW overcomes the size limitation of physical pixilated electrodes by utilizing dynamic and reconfigurable optical patterns and enables the continuous transport, splitting, merging, and mixing of droplets with volumes ranging from 50 mL to 250 pL, over 5-orders of magnitude. This single-sided open configuration provides a flexible interface for integration with other microfluidic components, such as sample reservoirs through simple tubing. Light-triggered, parallel, and volume-tunable droplet injection with volume variation less than 1% has been demonstrated with SCOEW. The unique lateral field-driven optoelectrowetting mechanism also enables extremely low light intensity actuation, and droplet manipulation can be achieved by directly positioning the SCOEW chip on a LCD screen used in a laptop or portable cellular phone

    Semiparametric Multivariate Accelerated Failure Time Model with Generalized Estimating Equations

    Full text link
    The semiparametric accelerated failure time model is not as widely used as the Cox relative risk model mainly due to computational difficulties. Recent developments in least squares estimation and induced smoothing estimating equations provide promising tools to make the accelerate failure time models more attractive in practice. For semiparametric multivariate accelerated failure time models, we propose a generalized estimating equation approach to account for the multivariate dependence through working correlation structures. The marginal error distributions can be either identical as in sequential event settings or different as in parallel event settings. Some regression coefficients can be shared across margins as needed. The initial estimator is a rank-based estimator with Gehan's weight, but obtained from an induced smoothing approach with computation ease. The resulting estimator is consistent and asymptotically normal, with a variance estimated through a multiplier resampling method. In a simulation study, our estimator was up to three times as efficient as the initial estimator, especially with stronger multivariate dependence and heavier censoring percentage. Two real examples demonstrate the utility of the proposed method

    Tachyon Field Quantization and Hawking Radiation

    Full text link
    We quantize the tachyon field in a static two dimensional dilaton gravity black hole background,and we calculate the Hawking radiation rate. We find that the thermal radiation flux, due to the tachyon field, is larger than the conformal matter one. We also find that massive scalar fields which do not couple to the dilaton, do not give any contribution to the thermal radiation, up to terms quadratic in the scalar curvature.Comment: 13 pages, Latex file, 1 figure available upon reques

    Nitrogen-Functionalized Graphene Nanoflakes (GNFs:N): Tunable Photoluminescence and Electronic Structures

    Full text link
    This study investigates the strong photoluminescence (PL) and X-ray excited optical luminescence observed in nitrogen-functionalized 2D graphene nanoflakes (GNFs:N), which arise from the significantly enhanced density of states in the region of {\pi} states and the gap between {\pi} and {\pi}* states. The increase in the number of the sp2 clusters in the form of pyridine-like N-C, graphite-N-like, and the C=O bonding and the resonant energy transfer from the N and O atoms to the sp2 clusters were found to be responsible for the blue shift and the enhancement of the main PL emission feature. The enhanced PL is strongly related to the induced changes of the electronic structures and bonding properties, which were revealed by the X-ray absorption near-edge structure, X-ray emission spectroscopy, and resonance inelastic X-ray scattering. The study demonstrates that PL emission can be tailored through appropriate tuning of the nitrogen and oxygen contents in GNFs and pave the way for new optoelectronic devices.Comment: 8 pages, 6 figures (including toc figure

    Opto-mechanical measurement of micro-trap via nonlinear cavity enhanced Raman scattering spectrum

    Full text link
    High-gain resonant nonlinear Raman scattering on trapped cold atoms within a high-fineness ring optical cavity is simply explained under a nonlinear opto-mechanical mechanism, and a proposal using it to detect frequency of micro-trap on atom chip is presented. The enhancement of scattering spectrum is due to a coherent Raman conversion between two different cavity modes mediated by collective vibrations of atoms through nonlinear opto-mechanical couplings. The physical conditions of this technique are roughly estimated on Rubidium atoms, and a simple quantum analysis as well as a multi-body semiclassical simulation on this nonlinear Raman process is conducted.Comment: 7 pages, 2 figure

    Hydrodynamics of a 5D Einstein-dilaton black hole solution and the corresponding BPS state

    Full text link
    We apply the potential reconstruction approach to generate a series of asymptotically AdS (aAdS) black hole solutions, with a self-interacting bulk scalar field. Based on the method, we reproduce the pure AdS solution as a consistency check and we also generate a simple analytic 5D black hole solution. We then study various aspects of this solution, such as temperature, entropy density and conserved charges. Furthermore, we study the hydrodynamics of this black hole solution in the framework of fluid/gravity duality, e.g. the ratio of the shear viscosity to the entropy density. In a degenerate case of the 5D black hole solution, we find that the c function decreases monotonically from UV to IR as expected. Finally, we investigate the stability of the degenerate solution by studying the bosonic functional energy of the gravity and the Witten-Nester energy EWNE_{WN}. We confirm that the degenerate solution is a BPS domain wall solution. The corresponding superpotential and the solution of the killing spinor equation are found explicitly.Comment: V2: 23 pages, no figure, minor changes, typos corrected, new references and comments added, version accepted by JHE

    Cosmological Evolution of a Brane Universe in a Type 0 String Background

    Get PDF
    We study the cosmological evolution of a D3-brane Universe in a type 0 string background. We follow the brane-universe along the radial coordinate of the background and we calculate the energy density which is induced on the brane because of its motion in the bulk. We find that for some typical values of the parameters and for a particular range of values of the scale factor of the brane-universe, the effective energy density is dominated by a term proportional to 1(loga)4\frac{1}{(loga)^{4}} indicating a slow varying inflationary phase. For larger values of the scale factor the effective energy density takes a constant value and the brane-universe enters its usual inflationary period.Comment: 25 pages,1 figure,LaTex file,final version to appear in Phys. Rev.

    Differential requirements for the Pax6(5a) genes eyegone and twin of eyegone during eye development in Drosophila

    Get PDF
    In eye development the tasks of tissue specification and cell proliferation are regulated, in part, by the Pax6 and Pax6(5a) proteins respectively. In vertebrates, Pax6(5a) is generated as an alternately spliced isoform of Pax6. This stands in contrast to the fruit fly, Drosophila melanogaster, which has two Pax6(5a) homologs that are encoded by the eyegone and twin of eyegone genes. In this report we set out to determine the respective contributions that each gene makes to the development of the fly retina. Here we demonstrate that both eyg and toe encode transcriptional repressors, are expressed in identical patterns but at significantly different levels. We further show, through a molecular dissection of both proteins, that Eyg makes differential use of several domains when compared to Toe and that the number of repressor domains also differs between the two Pax6(5a) homologs. We predict that these results will have implications for elucidating the functional differences between closely related members of other Pax subclasses
    corecore