1,245 research outputs found

    The effect of local lattice distortion on physical properties of hexagonal rubidium tungsten bronze Rb0.23WOy

    Get PDF
    [[abstract]]Superconducting transition temperature Tc and normal-state resistivity as a function of oxygen content for hexagonal tungsten bronze Rb0.23WOy with 2.90 < y < 3.05 were obtained from transport measurements. It is remarkably interesting that Tc enhances about 50% and room-temperature resistivity increases about three orders of magnitude as oxygen content varies from 2.90 to 3.05. The low-temperature specific heat data indicate that the Einstein-like mode associated with Rb vibration has a dimensionality crossover from 3D to quasi-2D as oxygen content increases from 2.90 to 3.05. W L3-edge x-ray absorption spectra further show that W-O bond intensity gradually weakens as oxygen content increases, indicative of more oxygen disorder present in the oxygen-rich samples. The observed results strongly suggest that the local lattice distortion induced by oxygen disorder not only modulates Rb vibration, possibly coupled to electron-phonon interaction responsible for superconductivity, and also reduces the charge transfer between O 2p and W 5d orbital in the vicinity of y = 3.00. This scenario can possibly account for significant increases of Tc and normal-state resistivity of Rb0.23WOy as oxygen content slightly changes from 2.90 to 3.05.[[incitationindex]]SCI[[booktype]]電子

    Semiparametric Multivariate Accelerated Failure Time Model with Generalized Estimating Equations

    Full text link
    The semiparametric accelerated failure time model is not as widely used as the Cox relative risk model mainly due to computational difficulties. Recent developments in least squares estimation and induced smoothing estimating equations provide promising tools to make the accelerate failure time models more attractive in practice. For semiparametric multivariate accelerated failure time models, we propose a generalized estimating equation approach to account for the multivariate dependence through working correlation structures. The marginal error distributions can be either identical as in sequential event settings or different as in parallel event settings. Some regression coefficients can be shared across margins as needed. The initial estimator is a rank-based estimator with Gehan's weight, but obtained from an induced smoothing approach with computation ease. The resulting estimator is consistent and asymptotically normal, with a variance estimated through a multiplier resampling method. In a simulation study, our estimator was up to three times as efficient as the initial estimator, especially with stronger multivariate dependence and heavier censoring percentage. Two real examples demonstrate the utility of the proposed method

    Nitrogen-Functionalized Graphene Nanoflakes (GNFs:N): Tunable Photoluminescence and Electronic Structures

    Full text link
    This study investigates the strong photoluminescence (PL) and X-ray excited optical luminescence observed in nitrogen-functionalized 2D graphene nanoflakes (GNFs:N), which arise from the significantly enhanced density of states in the region of {\pi} states and the gap between {\pi} and {\pi}* states. The increase in the number of the sp2 clusters in the form of pyridine-like N-C, graphite-N-like, and the C=O bonding and the resonant energy transfer from the N and O atoms to the sp2 clusters were found to be responsible for the blue shift and the enhancement of the main PL emission feature. The enhanced PL is strongly related to the induced changes of the electronic structures and bonding properties, which were revealed by the X-ray absorption near-edge structure, X-ray emission spectroscopy, and resonance inelastic X-ray scattering. The study demonstrates that PL emission can be tailored through appropriate tuning of the nitrogen and oxygen contents in GNFs and pave the way for new optoelectronic devices.Comment: 8 pages, 6 figures (including toc figure

    Liquid Chromatography Electron Capture Dissociation Tandem Mass Spectrometry (LC-ECD-MS/MS) versus Liquid Chromatography Collision-induced Dissociation Tandem Mass Spectrometry (LC-CID-MS/MS) for the Identification of Proteins

    Get PDF
    Electron capture dissociation (ECD) offers many advantages over the more traditional fragmentation techniques for the analysis of peptides and proteins, although the question remains: How suitable is ECD for incorporation within proteomic strategies for the identification of proteins? Here, we compare LC-ECD-MS/MS and LC-CID-MS/MS as techniques for the identification of proteins.Experiments were performed on a hybrid linear ion trap–Fourier transform ion cyclotron resonance mass spectrometer. Replicate analyses of a six-protein (bovine serum albumin, apo-transferrin,lysozyme, cytochrome c, alcohol dehydrogenase, and β-galactosidase) tryptic digest were performed and the results analyzed on the basis of overall protein sequence coverage and sequence tag lengths within individual peptides. The results show that although protein coverage was lower for LC-ECDMS/MS than for LC-CID-MS/MS, LC-ECD-MS/MS resulted in longer peptide sequence tags,providing greater confidence in protein assignment

    Tribological Analysis of Copper-Coated Graphite Particle-Reinforced A359 Al/5 wt.% SiC Composites

    Get PDF
    [[abstract]]Copper-coated graphite particles can be mass-produced by the cementation process using simple equipment. Graphite particulates that were coated with electroless copper and 5 wt.% SiC particulates were introduced into an aluminum alloy by compocasting to make A359 Al/5 wt.% SiC(p) composite that contained 2, 4, 6, and 8 wt.% graphite particulate composite. The effects of SiC particles, quantity of graphite particles, normal loading, sliding speed and wear debris on the coefficient of friction, and the wear rate were investigated. The results thus obtained indicate that the wear properties were improved by adding small amounts of SiC and graphite particles into the A359 Al alloy. The coefficient of friction of the A359 Al/5 wt.% SiC(p) composite that contained 6.0 wt.% graphite particulates was reduced to 0.246 and the amount of graphite film that was released on the worn surface increased with the graphite particulate content. The coefficient of friction and the wear rate were insensitive to the variation in the sliding speed and normal loading.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Impact on arsenic exposure of a growing proportion of untested wells in Bangladesh

    Get PDF
    In many areas of Bangladesh, it has been more than six years since a national campaign to test tubewells for arsenic (As) was conducted. Many households therefore draw their water for drinking and cooking from untested wells. A household drinking water survey of 6646 households was conducted in Singair upazilla of Bangladesh. A subset of 795 untested wells used by 1000 randomly selected households was tested in the field by trained village workers with the Hach EZ kit, using an extended reaction time of 40 min, and in the laboratory by high-resolution inductively-coupled plasma-mass spectrometry (HR ICP-MS). The household survey shows that more than 80% of the wells installed since the national testing campaign in this area were untested. Less than 13% of the households with untested wells knew where a low-As well was located near their home. Village workers using the Hach EZ kit underestimated the As content of only 4 out of 795 wells relative to the Bangladesh standard. However, the As content of 168 wells was overestimated relative to the same threshold. There is a growing need for testing tubewells in areas of Bangladesh where As concentrations in groundwater are elevated. This could be achieved by village workers trained to use a reliable field kit. Such an effort would result in a considerable drop in As exposure as it increases the opportunities for well switching by households

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Neural protection by naturopathic compounds—an example of tetramethylpyrazine from retina to brain

    Get PDF
    Given the advantages of being stable in the ambient environment, being permeable to the blood–brain and/or blood–eye barriers and being convenient for administration, naturopathic compounds have growingly become promising therapeutic candidates for neural protection. Extracted from one of the most common Chinese herbal medicines, tetramethylpyrazine (TMP), also designated as ligustrazine, has been suggested to be neuroprotective in the central nervous system as well as the peripheral nerve network. Although the detailed molecular mechanisms of its efficacy for neural protection are understood limitedly, accumulating evidence suggests that antioxidative stress, antagonism for calcium, and suppression of pro-inflammatory factors contribute significantly to its neuroprotection. In animal studies, systemic administration of TMP (subcutaneous injection, 50 mg/kg) significantly blocked neuronal degeneration in hippocampus as well as the other vulnerable regions in brains of Sprague–Dawley rats following kainate-induced prolonged seizures. Results from us and others also demonstrated potent neuroprotective efficacy of TMP for retinal cells and robust benefits for brain in Alzheimer’s disease or other brain injury. These results suggest a promising prospect for TMP to be used as a treatment of specific neurodegenerative diseases. Given the assessment of the distribution, metabolism, excretion, and toxicity information that is already available on most neuroprotective naturopathic compounds such as TMP, it would not take much preclinical data to justify bringing such therapeutic compounds to clinical trials in humans
    corecore