3 research outputs found

    Plant-Microbe Interaction: Prospects and Applications in Sustainable Environmental Management

    Get PDF
    Plant-microbe interaction is mostly mutualistic although sometimes it can be negative. These interactions contribute to improving the environmental quality and health of all organisms. One significant aspect to this is application in sustainable environmental management. Plants are known to be involved in remediation of polluted environments through a mechanism known as phytoremediation and this process is usually more effective in collaboration with microorganism resident within the plant environment. These plants and microbes possess attributes that makes them great candidates for sustainable remediation of impacted environments. Different organic pollutants have been decontaminated from the environment using the phytoremediation approach. The plant-associated microbes possess certain traits that exert selective effect on the growth of plants which consequently perform the decontamination process through different mechanisms. Also, these microorganisms’ harbour requisite genes charged with the responsibility of mineralization of different organic and inorganic compounds through several pathways to produce innocuous by-products. The limitations associated with this approach that prevents full-scale application such as contaminant-induced stress frequently leads to low/slow rates of seed germination, plant development and decreases in plant biomass have been solved by using plant growth promoting rhizobacteria. Phytoremediation is an emerging, cost-effective, eco-friendly and operational technology for the cleanup of polluted environment

    Biotechnological Potentials of Microbe Assisted Eco-Recovery of Crude Oil Impacted Environment

    Get PDF
    Globally, the environment is facing a very challenging situation with constant influx of crude oil and its derivatives due to rapid urbanization and industrialization. The release of this essential energy source has caused tremendous consequences on land, water, groundwater, air and biodiversity. Crude oil is a very complex and variable mixture of thousands of individual compounds that can be degraded with microbes with corresponding enzymatic systems harboring the genes. With advances in biotechnology, bioremediation has become one of the most rapidly developing fields of environmental restoration, utilizing microorganisms to reduce the concentration and toxicity of various chemical pollutants, such as petroleum hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, phthalate esters, nitroaromatic compounds and industrial solvents. Different remediation methods have been introduced and applied with varied degrees of success in terms of reduction in contamination concentration without considering ecotoxicity and restoration of biodiversity. Researchers have now developed methods that consider ecotoxicology, environmental sustainability and ecorestoration in remediation of crude oil impacted sites and they are categorized as biotechnological tools such as bioremediation. The approach involves a natural process of microorganisms with inherent genetic capabilities completely mineralizing/degrading contaminants into innocuous substances. Progressive advances in bioremediation such as the use of genetically engineered microbes have become an improved system for empowering microbes to degrade very complex recalcitrant substances through the modification of rate-limiting steps in the metabolic pathway of hydrocarbon degrading microbes to yield increase in mineralization rates or the development of completely new metabolic pathways incorporated into the bacterial strains for the degradation of highly persistent compounds. Other areas discussed in this chapter include the biosurfactant-enhanced bioremediation, microbial and plant bioremediation (phytoremediation), their mechanism of action and the environmental factors influencing the processes

    Functional Gene Diversity of Selected Indigenous Hydrocarbon-Degrading Bacteria in Aged Crude Oil

    No full text
    Crude oil pollution has consistently deteriorated all environmental compartments through the cycle of activities of the oil and gas industries. However, there is a growing need to identify microbes with catabolic potentials to degrade these pollutants. This research was conducted to identify bacteria with functional degradative genes. A crude oil-polluted soil sample was obtained from an aged spill site at Imo River, Ebubu, Komkom community, Nigeria. Bacteria isolates were obtained and screened for hydrocarbon degradation potential by turbidometry assay. Plasmid and chromosomal DNA of the potential degraders were further screened for the presence of selected catabolic genes (C230, Alma, Alkb, nahAC, and PAHRHD(GP)) and identified by molecular typing. Sixteen (16) out of the fifty (50) isolates obtained showed biodegradation activity in a liquid broth medium at varying levels. Bacillus cereus showed highest potential for this assay with an optical density of 2.450 @ 600 nm wavelength. Diverse catabolic genes resident in plasmids and chromosomes of the isolates and, in some cases, both plasmid and chromosomes of the same organism were observed. The C230 gene was resident in >50% of the microbial population tested, while other genes occurred in lower proportions with the least observed in nahAC and PAHRHD. These organisms can serve as potential bioremediation agents
    corecore