5 research outputs found

    The Regulation of Online Dispute Resolution: Effectiveness of Online Consumer Protection Guidelines

    Get PDF
    Regulation of online dispute resolution (ODR) has become an important element in the conceptualisation of its role as an appropriate dispute resolution mechanism. Given the lack of specific legislation regarding ODR nationally and internationally, there is a growing tendency towards seeking appropriate regulatory models for its regulation in the ODR literature, international organisations, governments and the private sector. While recognising the valuable contributions made in all these fields, this article maps the regulatory approaches for ODR adopted by governments in the Guidelines for Consumer Protection in the Context of Electronic Commerce developed by the Organisation for Economic Co-operation and Development in 1999 and the Australian Guidelines for Electronic Commerce in 2006. In addition, the viability of the regulatory approaches of these instruments is explored in the context of online consumer arbitration used for the resolution of cross-border business-to-consumer electronic commerce disputes. In the course of the discussion, some insights on further improvements to these guidelines are also provided

    Non-intrusive load monitoring under residential solar power influx

    Get PDF
    This paper proposes a novel Non-Intrusive Load Monitoring (NILM) method for a consumer premises with a residentially installed solar plant. This method simultaneously identifies the amount of solar power influx as well as the turned ON appliances, their operating modes, and power consumption levels. Further, it works effectively with a single active power measurement taken at the total power entry point with a sampling rate of 1 Hz. First, a unique set of appliance and solar signatures were constructed using a high-resolution implementation of Karhunen Loéve expansion (KLE). Then, different operating modes of multi-state appliances were automatically classified utilizing a spectral clustering based method. Finally, using the total power demand profile, through a subspace component power level matching algorithm, the turned ON appliances along with their operating modes and power levels as well as the solar influx amount were found at each time point. The proposed NILM method was first successfully validated on six synthetically generated houses (with solar units) using real household data taken from the Reference Energy Disaggregation Dataset (REDD) - USA. Then, in order to demonstrate the scalability of the proposed NILM method, it was employed on a set of 400 individual households. From that, reliable estimations were obtained for the total residential solar generation and for the total load that can be shed to provide reserve services. Finally, through a developed prediction technique, NILM results observed from 400 households during four days in the recent past were utilized to predict the next day’s total load that can be shed

    Real-time non-intrusive appliance load monitoring under supply voltage fluctuations

    No full text
    This paper presents a complete real-time implementation of a Non-Intrusive Appliance Load Monitoring (NIALM) system that, is robust under residential voltage level fluctuations. Existing NIALM techniques rely on multiple measurements taken at high sampling rates, but, only have been proven in simulated environments without even considering the effect of residential voltage level fluctuations - which is a severe problem in power systems of most developing countries like Sri Lanka. In contrast, through the NIALM method proposed in this paper, accurate load monitoring results were obtained in realtime using only smart meter measurements taken at a low sampling rate from a real appliance setup under residential voltage level fluctuations. In the proposed NIALM method, initially in the learning phase, a properly constructed MATLABTM Graphical User Interface (GUI) was used to acquire signals of each appliance active power consumption and voltage levels. Then, obtained active power measurements were separated into subspace components (SCs) via the Karhunen Loeve' Expansion (KLE) while also taking the voltage variations into account. Using those SCs, a unique information rich appliance level signature database was constructed and it was then used to obtain the signatures for all possible device combinations. Next, a separate GUI was designed to identify the turned ON appliance combination in the current time window using the pre-constructed signature databases, after reading the total residential active power consumption and the supply voltage. To validate the proposed real-time NIALM implementation, data from a laboratory arrangement consisting of ten household appliances was used. From the results, it was found that the proposed method is capable of accurately identifying the turned on appliances even under severe residential supply voltage level fluctuations

    The State of Research on Arbitration and EU Law: Quo Vadis European Arbitration?

    No full text
    corecore