4 research outputs found
New insight into silica deposition in horsetail (<it>Equisetum arvense</it>)
Abstract Background The horsetails (Equisetum sp) are known biosilicifiers though the mechanism underlying silica deposition in these plants remains largely unknown. Tissue extracts from horsetails grown hydroponically and also collected from the wild were acid-digested in a microwave oven and their silica 'skeletons' visualised using the fluor, PDMPO, and fluorescence microscopy. Results Silica deposits were observed in all plant regions from the rhizome through to the stem, leaf and spores. Numerous structures were silicified including cell walls, cell plates, plasmodesmata, and guard cells and stomata at varying stages of differentiation. All of the major sites of silica deposition in horsetail mimicked sites and structures where the hemicellulose, callose is known to be found and these serendipitous observations of the coincidence of silica and callose raised the possibility that callose might be templating silica deposition in horsetail. Hydroponic culture of horsetail in the absence of silicic acid resulted in normal healthy plants which, following acid digestion, showed no deposition of silica anywhere in their tissues. To test the hypothesis that callose might be templating silica deposition in horsetail commercially available callose was mixed with undersaturated and saturated solutions of silicic acid and the formation of silica was demonstrated by fluorimetry and fluorescence microscopy. Conclusions The initiation of silica formation by callose is the first example whereby any biomolecule has been shown to induce, as compared to catalyse, the formation of silica in an undersaturated solution of silicic acid. This novel discovery allowed us to speculate that callose and its associated biochemical machinery could be a missing link in our understanding of biosilicification.</p
Rough and tough. How does silicic acid protect horsetail from fungal infection?
Abstract Horsetail (Equisetum arvense) plants grew healthily for 10 weeks under both Si-deficient and Si-replete conditions. After 10 weeks, plants grown under Si-deficient conditions succumbed to fungal infection. We have used NanoSIMS and fluorescence microscopy to investigate silica deposition in the tissues of these plants. Horsetail grown under Si-deficient conditions did not deposit identifiable amounts of silica in their tissues. Plants grown under Si-replete conditions accumulated silica throughout their tissues and especially in the epidermis of the outer side of the leaf and the furrow region of the stem where it was continuous and often, as a double layer suggestive of a barrier function. We have previously shown, both in vivo (in horsetail and thale cress) and in vitro (using an undersaturated solution of Si(OH)4), that callose is a “catalyst” of plant silica deposition. Here we support this finding by comparing the deposition of silica to that of callose and by showing that they are co-localized. We propose the existence of a synergistic mechanical protection by callose and silica against pathogens in horsetail, whereby the induction of callose synthesis and deposition is the first, biochemical line of defence and callose-induced precipitation of silica is the second, adventitious mechanical barrier