4 research outputs found

    Characterization of an Immunogenic Mutation in a Patient with Metastatic Triple Negative Breast Cancer.

    No full text
    The administration of autologous tumor-infiltrating lymphocytes (TILs) can mediate durable tumor regressions in patients with melanoma likely based on the recognition of immunogenic somatic mutations expressed by the cancer. There are limited data regarding the immunogenicity of mutations in breast cancer. We sought to identify immunogenic nonsynonymous mutations in a patient with triple-negative breast cancer (TNBC) to identify and isolate mutation-reactive TILs for possible use in adoptive cell transfer. A TNBC metastasis was resected for TIL generation and whole-exome sequencing. Tandem minigenes or long 25-mer peptides encoding selected mutations were electroporated or pulsed onto autologous antigen-presenting cells, and reactivity of TIL was screened by upregulation of CD137 and IFNγ ELISPOT. The nature of the T-cell response against a unique nonsynonymous mutation was characterized. We identified 72 nonsynonymous mutations from the tumor of a patient with TNBC. CD4 and HLA-DRB1*1501-restricted TILs isolated from this tumor recognized a single mutation in (recombination signal binding protein for immunoglobulin kappa J region). Analysis of 16 metastatic sites revealed that the mutation was ubiquitously present in all samples. Breast cancers can express naturally processed and presented unique nonsynonymous mutations that are recognized by a patient's immune system. TILs recognizing these immunogenic mutations can be isolated from a patient's tumor, suggesting that adoptive cell transfer of mutation-reactive TILs could be a viable treatment option for patients with breast cancer.

    CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial

    No full text
    Despite impressive progress, more than 50% of patients treated with CD19-targeting chimeric antigen receptor T cells (CAR19) experience progressive disease. Ten of 16 patients with large B cell lymphoma (LBCL) with progressive disease after CAR19 treatment had absent or low CD19. Lower surface CD19 density pretreatment was associated with progressive disease. To prevent relapse with CD19- or CD19lo disease, we tested a bispecific CAR targeting CD19 and/or CD22 (CD19-22.BB.z-CAR) in a phase I clinical trial (NCT03233854) of adults with relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL) and LBCL. The primary end points were manufacturing feasibility and safety with a secondary efficacy end point. Primary end points were met; 97% of products met protocol-specified dose and no dose-limiting toxicities occurred during dose escalation. In B-ALL (n = 17), 100% of patients responded with 88% minimal residual disease-negative complete remission (CR); in LBCL (n = 21), 62% of patients responded with 29% CR. Relapses were CD19-/lo in 50% (5 out of 10) of patients with B-ALL and 29% (4 out of 14) of patients with LBCL but were not associated with CD22-/lo disease. CD19/22-CAR products demonstrated reduced cytokine production when stimulated with CD22 versus CD19. Our results further implicate antigen loss as a major cause of CAR T cell resistance, highlight the challenge of engineering multi-specific CAR T cells with equivalent potency across targets and identify cytokine production as an important quality indicator for CAR T cell potency

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one

    No full text
    corecore