190 research outputs found

    Transport and magnetic properties in YBaCo2O5.45: Focus on the high-temperature transition

    Full text link
    The electronic transport properties and the magnetic susceptibility were measured in detail in YBaCo2O5.45YBaCo_2O_{5.45}. Close to the so-called metal-insulator transition, strong effects of resistance relaxation, a clear thermal hysteresis and a sudden increase of the resistance noise are observed. This is likely due to the first order character of the transition and to the underlying phases coexistence. Despite these out of equilibrium features, a positive and linear magneto-resistance is also observed, possibly linked to the heterogeneity of the state. From a magnetic point of view, the paramagnetic to ordered magnetic state transition is observed using non linear susceptibilty. This transition shows the characteristics of a continuous transition, and time dependent effects can be linked with the dynamics of magnetic domains in presence of disorder. Thus, when focusing on the order of the transitions, the electronic one and the magnetic one can not be directly associated.Comment: accepted for publication in PR

    Cationic exchange in nanosized ZnFe2O4 spinel revealed by experimental and simulated near-edge absorption structure

    Full text link
    The non-equilibrium cation site occupancy in nanosized zinc ferrites (6-13 nm) with different degree of inversion (0.2 to 0.4) was investigated using Fe and Zn K-edge x-ray absorption spectroscopy XANES and EXAFS, and magnetic measurements. The very good agreement between experimental and ab-initio calculations on the Zn K-edge XANES region clearly show the large Zn2+(A)--Zn2+[B] transference that takes place in addition to the well-identified Fe3+[B]--Fe3+(A) one, without altering the long-range structural order. XANES spectra features as a function of the spinel inversion were shown to depend on the configuration of the ligand shells surrounding the absorbing atom. This XANES approach provides a direct way to sense cationic inversion in these spinel compounds. We also demonstrated that a mechanical crystallization takes place on nanocrystalline spinel that causes an increase of both grain and magnetic sizes and, simultaneously, generates a significant augment of the inversion.Comment: 5 pages, 5 eps figures, uses revtex4, corrected table

    Magnetic enhancement of Co0.2_{0.2}Zn0.8_{0.8}Fe2_2O4_4 spinel oxide by mechanical milling

    Full text link
    We report the magnetic properties of mechanically milled Co0.2_{0.2}Zn0.8_{0.8}Fe2_2O4_4 spinel oxide. After 24 hours milling of the bulk sample, the XRD spectra show nanostructure with average particle size \approx 20 nm. The as milled sample shows an enhancement in magnetization and ordering temperature compared to the bulk sample. If the as milled sample is annealed at different temperatures for the same duration, recrystallization process occurs and approaches to the bulk structure on increasing the annealing temperatures. The magnetization of the annealed samples first increases and then decreases. At higher annealing temperature (\sim 10000^{0}C) the system shows two coexisting magnetic phases {\it i.e.}, spin glass state and ferrimagnetic state, similar to the as prepared bulk sample. The room temperature M\"{o}ssbauer spectra of the as milled sample, annealed at 3000^{0}C for different durations (upto 575 hours), suggest that the observed change in magnetic behaviour is strongly related with cations redistribution between tetrahedral (A) and octahedral (O) sites in the spinel structure. Apart from the cation redistribution, we suggest that the enhancement of magnetization and ordering temperature is related with the reduction of B site spin canting and increase of strain induced anisotropic energy during mechanical milling.Comment: 14 pages LaTeX, 10 ps figure

    Crystallographically oriented magnetic ZnFe2O4 nanoparticles synthesized by Fe implantation into ZnO

    Full text link
    In this paper, a correlation between structural and magnetic properties of Fe implanted ZnO is presented. High fluence Fe^+ implantation into ZnO leads to the formation of superparamagnetic alpha-Fe nanoparticles. High vacuum annealing at 823 K results in the growth of alpha-Fe particles, but the annealing at 1073 K oxidized the majority of the Fe nanoparticles. After a long term annealing at 1073 K, crystallographically oriented ZnFe2O4 nanoparticles were formed inside ZnO with the orientation relationship of ZnFe2O4(111)[110]//ZnO(0001)[1120]. These ZnFe2O4 nanoparticles show a hysteretic behavior upon magnetization reversal at 5 K.Comment: 21 pages, 7 figures, accepted by J. Phys. D: Appl. Phy

    Size dependent magnetic properties and cation inversion in chemically synthesized MnFe2O4 nanoparticles

    Get PDF
    MnFe2O4nanoparticles with diameters ranging from about 4to50nm were synthesized using a modified coprecipitation method. X-ray diffractograms revealed a pure phase spinel ferrite structure for all samples. Transmission electron microscopy showed that the particles consist of a mixture of both spherical (smaller) and cubic (larger) particles dictated by the reaction kinetics. The Néel temperatures (TN) of MnFe2O4 for various particle sizes were determined by using high temperature magnetometry. The ∼4nm MnFe2O4 particles showed a TN of about 320°C whereas the ∼50nm particles had a TN of about 400°C. The high Néel temperature, compared with the bulk MnFe2O4 TN of 300°C, is due to a change in cation distribution between the tetrahedral and octahedral sites of the spinel lattice. Results of extended x-ray absorption fine structure measurements indicate a systematic change in the cation distribution dependent on processing conditions

    High coercivity cobalt carbide nanoparticles processed via polyol reaction: A new permanent magnet material

    Full text link
    Cobalt carbide nanoparticles were processed using polyol reduction chemistry that offers high product yields in a cost effective single-step process. Particles are shown to be acicular in morphology and typically assembled as clusters with room temperature coercivities greater than 4 kOe and maximum energy products greater than 20 KJ/m3. Consisting of Co3C and Co2C phases, the ratio of phase volume, particle size, and particle morphology all play important roles in determining permanent magnet properties. Further, the acicular particle shape provides an enhancement to the coercivity via dipolar anisotropy energy as well as offering potential for particle alignment in nanocomposite cores. While Curie temperatures are near 510K at temperatures approaching 700 K the carbide powders experience an irreversible dissociation to metallic cobalt and carbon thus limiting operational temperatures to near room temperature.Comment: Total 28 pages, 10 figures, and 1 tabl

    Antimicrobial activity of sesquiterpene lactones isolated from traditional medicinal plant, Costus speciosus (Koen ex.Retz.) Sm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Costus speciosus </it>(Koen ex.Retz.) Sm (Costaceae) is an Indian ornamental plant which has long been used medicinally in traditional systems of medicine. The plant has been found to possess diverse pharmacological activities. Rhizomes are used to treat pneumonia, rheumatism, dropsy, urinary diseases, jaundice, skin diseases and leaves are used<b/>to treat mental disorders.</p> <p>Method</p> <p>Antibacterial and antifungal activities were tested using Disc diffusion method and Minimum Inhibitory <b>Concentration </b>(MIC). Column chromatography was used to isolate compounds from hexane extract. X-ray crystallography technique and GC-MS analysis were used to identify the compounds</p> <p>Results</p> <p>Antibacterial and antifungal activities were observed in hexane, chloroform, ethyl acetate and methanol extracts. Hexane extract of <it>C.speciosus </it>showed good activity against tested fungi also. Two sesquiterpenoid compounds were isolated (costunolide and eremanthin) from the hexane extract. Both the compounds did not inhibit the growth of tested bacteria. But, both the compounds inhibited the tested fungi. The compound costunolide showed significant antifungal activity. The MIC values of costunolide were; 62.5 μg/ml against <it>Trichophyton mentagrophytes</it>, 62. μg/ml against <it>T. simii</it>, 31.25 μg/ml against <it>T. rubrum </it>296, 62.5 μg/ml against <it>T. rubrum </it>57, 125 μg/ml against <it>Epidermophyton floccosum</it>, 250 μg/ml against <it>Scopulariopsis </it>sp, 250 μg/ml against <it>Aspergillus niger</it>, 125 μg/ml against <it>Curvulari lunata</it>, 250 μg/ml against <it>Magnaporthe grisea</it>.</p> <p>Conclusion</p> <p>Hexane extract showed promising antibacterial and antifungal activity. The isolated compound costunolide showed good antifungal activity.</p
    corecore