15 research outputs found

    Fluid characterization and phase behavior studies of oil from the frozen reservoir of Umiat Oil Field, Alaska

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2011Umiat oil field is the largest oil accumulation in National Petroleum Reserve (NPRA) No. 4 of Alaska. Shallow reservoir depths, low reservoir pressures, and low temperatures with most of the oil-producing zone in a continuous layer of permafrost are unique characteristics that make Umiat reservoir unconventional and difficult to produce. However, unavailability of fluid characterization and phase behavior data needed for reservoir simulation studies pose challenges in developing an effective production strategy. Given the conspicuous lack of complete fluid data on Umiat oils and the unavailability of live oil samples from Umiat, an experimental study was undertaken to characterize and quantify phase behavior of an available small volume of dead Umiat oil. The oil composition characterized experimentally was found to be severely weatherized and not representative of original Umiat oil. Comparison of components in the dead oil sample origina one characterized by Pedersen method enabled determination of the mass of each component that would be need to be added to the weathered sample in order to compensate for the evaporated light ends. The re-created sample was subsequently used for constant composition expansion (CCE) laboratory PVT test. The bubble point pressure at reservoir temperatures, and densities and viscosities of single-phase reservoir fluid at various pressures were measured. The phase behavior of the pseudo live oil was also simulated using Peng-Robinson equations of state (PR-EOS). The EOS model was tuned with measured experimental data to simulate differential liberation tests in order to obtain the PVT data needed for reservoir simulation studies.Department of Energy Award Number DE- FC 26-08N T000564

    Automating multistep flow synthesis: approach and challenges in integrating chemistry, machines and logic

    No full text
    The implementation of automation in the multistep flow synthesis is essential for transforming laboratory-scale chemistry into a reliable industrial process. In this review, we briefly introduce the role of automation based on its application in synthesis viz. auto sampling and inline monitoring, optimization and process control. Subsequently, we have critically reviewed a few multistep flow synthesis and suggested a possible control strategy to be implemented so that it helps to reliably transfer the laboratory-scale synthesis strategy to a pilot scale at its optimum conditions. Due to the vast literature in multistep synthesis, we have classified the literature and have identified the case studies based on few criteria viz. type of reaction, heating methods, processes involving in-line separation units, telescopic synthesis, processes involving in-line quenching and process with the smallest time scale of operation. This classification will cover the broader range in the multistep synthesis literature

    Novel machine learning-based method for estimation of the surface area of porous silica particles

    No full text
    This work reports a novel and quick method to estimate the surface area of porous materials. Conventionally, surface area measurement requires the BET method/N2 adsorption experiment which is time-consuming. In this work, we developed a method based on machine learning (ML) and the adsorption of a conductive dye on porous materials. The rate and quantity of dye adsorption, which is characterized by dynamic measurement of conductivity, provide an indirect measure of surface area and zeta potential. An ML-based soft sensor is developed to relate the measured conductivity profiles with surface area and zeta potential. A phenomenological model on dye adsorption is also developed, validated, and used to augment experimental data for training the soft sensor. The developed method was tested for porous silica particles with a range of surface areas (250−1100 m2 /g) and zeta potential (−17 mV: −29 mV). The developed soft sensor was able to estimate the surface area and zeta potential quite well. The developed approach and method reduce overall measurement time for surface area from several hours to a few minutes. The method can potentially be implemented in continuous plants producing porous materials like silica</p

    Wettability measurment apparatus for porous material using modified washburn method

    No full text
    In this paper we are presenting the design and development of computer interfaced wettability apparatus which works on modified Washburn method for measurement of wettability and penetration kinetics of liquid into porous material. The mass gain of the penetration liquid in to tube filled with powder was measured vs time. A LabVIEW based data acquisition system was developed to acquire online wettability data in to computer. One of the primary objectives of research is to develop cost effective, user friendly apparatus for developing county like India. The wettability instrument developed at Shah Schulman Center for Surface Science and Nanotechnology uses electronic balance with little modification as a sensor, RS232 serial communication which eliminate requirement of proprietary protocol for communication and LabVIEW as data logging software which provides facility for online plotting and report generation. Here we are presenting results of starch powder coated with nano particle aerosol silica r972( hydrophobic) and 200p( hydrophilic) with water and hexene. We are also presenting wettability results of PTFE powder coated with AOT surfactant. This instrument is very useful for measurement of wettability in areas like food processing, horticultures, textile manufacturing and civil engineering,etc. This instrument is very useful for industries, small research laboratories and academic institution.by Chinmay Ghoroi et al.

    Wettability measurement apparatus for porous material using the modified Washburn method

    No full text
    In this work a cost-effective instrument for measuring the wettability of powder materials was designed and developed, which works on the modified Washburn method. The instrument measures the mass gain against time due to penetration of the liquid into the powder materials using a microbalance and LabVIEW-based data acquisition system. The wettability characteristic of different powders was determined from the contact angle using the modified Washburn equation. To demonstrate the performance of the developed instrument, the wettability of as-received corn starch and nano-coated corn starch powders was estimated with water as a test liquid. The corn starch powders coated with hydrophilic grade (Aerosil 200P) and hydrophobic grade (Aerosil R972) nanoparticles at different coating levels showed expected changes in their contact angle. Some of the results were also verified against the available standard instrument for wettability measurement and found to be consistent. The present configuration of the instrument costs about 500 US$ which is 15 to 20 times less than the available advanced models. The developed instrument is thus a cost-effective solution for wettability measurement which can be used for materials in food processing, pharmaceuticals, horticulture, textile manufacturing, civil engineering etc. The developed instrument is expected to help many small scale industries or research labs who cannot afford an expensive instrument for wettability studies.by Vikram Karde and Chinmay Ghoro

    Assessing the possibilities of designing a unified multistep continuous flow synthesis platform

    No full text
    The multistep flow synthesis of complex molecules has gained momentum over the last few years. A wide range of reaction types and conditions have been integrated seamlessly on a single platform including in-line separation as well as monitoring. Beyond merely getting considered as ‘flow version’ of conventional ‘one-pot synthesis’, multistep flow synthesis has become the next generation tool for creating libraries of new molecules. Here we give a more ‘engineering’ look at the possibility of developing a ‘unified multistep flow synthesis platform’. A detailed analysis of various scenarios is presented considering 4 different classes of drugs already reported in the literature. The possible complexities that an automated and controlled platform needs to handle are also discussed in detail. Three different design approaches are proposed: (i) one molecule at a time, (ii) many molecules at a time and (iii) cybernetic approach. Each approach would lead to the effortless integration of different synthesis stages and also at different synthesis scales. While one may expect such a platform to operate like a ‘driverless car’ or a ‘robo chemist’ or a ‘transformer’, in reality, such an envisaged system would be much more complex than these examples
    corecore