497 research outputs found

    Retroperitoneal Metastatic Adenocarcinoma Complicated with Necrotizing Fasciitis of the Thigh in a Patient with Advanced Rectal Colon Cancer

    Get PDF
    Background: Necrotizing fasciitis of the thigh due to colon cancer has not been previously reported, especially during radiotherapy. Case Presentation: A 73-year-old woman admitted to our hospital was diagnosed with sigmoid colon cancer that had spread to the left psoas muscle; radiotherapy was performed. Three months after the initiation of radiotherapy, the patient developed gait disturbance, poor appetite and high fever and was therefore admitted to the emergency department of our hospital. Blood examination revealed generalized inflammation with a high white blood cell count and C-reactive protein level. Computed tomography of the abdomen revealed fluid and gas tracking from the retroperitoneum into the intramuscular plane of the grossly enlarged right thigh. Consequently, emergent debridement was not performed and conservative therapy was done. The patient died. Conclusion: Necrotizing fasciitis of the thigh due to the spread of rectal colon cancer is unusual, but this fatal complication should be considered during radiotherapy in patients with unresectable colorectal cancer

    Wildfire: distributed, Grid-enabled workflow construction and execution

    Get PDF
    BACKGROUND: We observe two trends in bioinformatics: (i) analyses are increasing in complexity, often requiring several applications to be run as a workflow; and (ii) multiple CPU clusters and Grids are available to more scientists. The traditional solution to the problem of running workflows across multiple CPUs required programming, often in a scripting language such as perl. Programming places such solutions beyond the reach of many bioinformatics consumers. RESULTS: We present Wildfire, a graphical user interface for constructing and running workflows. Wildfire borrows user interface features from Jemboss and adds a drag-and-drop interface allowing the user to compose EMBOSS (and other) programs into workflows. For execution, Wildfire uses GEL, the underlying workflow execution engine, which can exploit available parallelism on multiple CPU machines including Beowulf-class clusters and Grids. CONCLUSION: Wildfire simplifies the tasks of constructing and executing bioinformatics workflows

    Love Postoperative ECG Shell (I)

    Get PDF
    Ongoing cutting-edge multidisciplinary research in textile fibers, biomedical sensors, and wireless and mobile telecommunications integrated with telemedicine, aims at developing intelligent biomedical clothing (IBC). This ECG shell design is a functional garment offering, health benefits, improved appearance and increased comfort. The garment is more comfortable because the high adhesive factor of current commercial hydrogel used in ECG monitoring causes patients skin allergies and pruritus from wearing the hydrogel for a long time

    Learning to predict expression efficacy of vectors in recombinant protein production

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recombinant protein production is a useful biotechnology to produce a large quantity of highly soluble proteins. Currently, the most widely used production system is to fuse a target protein into different vectors in <it>Escherichia coli </it>(<it>E. coli</it>). However, the production efficacy of different vectors varies for different target proteins. Trial-and-error is still the common practice to find out the efficacy of a vector for a given target protein. Previous studies are limited in that they assumed that proteins would be over-expressed and focused only on the solubility of expressed proteins. In fact, many pairings of vectors and proteins result in no expression.</p> <p>Results</p> <p>In this study, we applied machine learning to train prediction models to predict whether a pairing of vector-protein will express or not express in <it>E. coli</it>. For expressed cases, the models further predict whether the expressed proteins would be soluble. We collected a set of real cases from the clients of our recombinant protein production core facility, where six different vectors were designed and studied. This set of cases is used in both training and evaluation of our models. We evaluate three different models based on the support vector machines (SVM) and their ensembles. Unlike many previous works, these models consider the sequence of the target protein as well as the sequence of the whole fusion vector as the features. We show that a model that classifies a case into one of the three classes (no expression, inclusion body and soluble) outperforms a model that considers the nested structure of the three classes, while a model that can take advantage of the hierarchical structure of the three classes performs slight worse but comparably to the best model. Meanwhile, compared to previous works, we show that the prediction accuracy of our best method still performs the best. Lastly, we briefly present two methods to use the trained model in the design of the recombinant protein production systems to improve the chance of high soluble protein production.</p> <p>Conclusion</p> <p>In this paper, we show that a machine learning approach to the prediction of the efficacy of a vector for a target protein in a recombinant protein production system is promising and may compliment traditional knowledge-driven study of the efficacy. We will release our program to share with other labs in the public domain when this paper is published.</p

    Love Postoperative ECG T-shirt (II)

    Get PDF
    This ECG T-shirt is a functional garment offering, health benefits, improved appearance and increased comfort. The garment is more comfortable because the high adhesive factor of current commercial hydrogel used in ECG monitoring causes patients skin allergies and pruritus from wearing the hydrogel for a long time. Additionally, since the sensors are attached to the lining of this two-layer raglan T-shirt, the exterior is smooth and makes the user tracking device inconspicuous

    Design of a bionic-inspired exoskeleton robot for lower limb assist

    Get PDF
    The design of an intelligent exoskeleton robot with pneumatic artificial muscles for human lower limb motion assist using electromyography (EMG) is presented. There are four topics addressed in this paper. Decoding electromyography is the first topic. When muscles are active, they produce an electrical activity. EMG is a record of this electrical activity that reflects human’s movement. Through regression analysis a model is obtained to extract motion commands from EMG. It would be an advantage to employ EMG as a control signal for the exoskeleton control. Second, the pneumatic artificial muscle, air muscle for short, is a simple and powerful actuator. When actuated with compressed air, it contracts and provides a pulling force. As a result of its behavior in a similar way to a biological muscle, air muscle is adapted for a bionic actuator of the assist robot. The force models of air muscles are investigated by experiments in a workbench. Third, for the control of a bionic-inspired robot, the multimodal sensory feedback including EMG and inertial sensors is necessary. By using EMG as a force-proportional measurement between human and robot, a control system combined a sensor-fusion approach and a compliant mechanism enables exoskeleton to carry out human-robot collaboration. Finally, a prototype of power-assist exoskeleton robot for lower limb is completed and evaluated by experiments successfully

    Paeoniflorin has anti-inflammation and neurogenesis functions through nicotinic acetylcholine receptors in cerebral ischemia-reperfusion injury rats

    Get PDF
    Objective(s): Paeoniflorin (PF) has anti-oxidation, anti-inflammation, anti-apoptosis, and neuroprotection pharmacological effects against ischemic injury. The aim of the present study was to investigate the neuroprotection mechanisms of PF in cerebral ischemia-reperfusion injury rats.Materials and Methods: We established an animal model of cerebral infarct by occlusion of the middle cerebral artery for 15 min, followed by reperfusion, and PF was administered 24 hr later (20 mg/kg, intraperitoneally for 6 days) after reperfusionResults: Treatment with PF reduced the neurological deficit score, improved motor function, decreased cell counts of nicotinic acetylcholine receptor (nAChR) α4β2 immunoreactive cells, and increased cell counts of nAChR α7. Furthermore, PF administration suppressed neuronal apoptosis and promoted neurogenesis.Conclusion: PF rescued neurological deficit and underlying mechanisms were inhibition of neurological apoptosis and inflammation by nAChRs

    Acid-sensing ion channel 3 mediates peripheral anti-hyperalgesia effects of acupuncture in mice inflammatory pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peripheral tissue inflammation initiates hyperalgesia accompanied by tissue acidosis, nociceptor activation, and inflammation mediators. Recent studies have suggested a significantly increased expression of acid-sensing ion channel 3 (ASIC3) in both carrageenan- and complete Freund's adjuvant (CFA)-induced inflammation. This study tested the hypothesis that acupuncture is curative for mechanical hyperalgesia induced by peripheral inflammation.</p> <p>Methods</p> <p>Here we used mechanical stimuli to assess behavioral responses in paw and muscle inflammation induced by carrageenan or CFA. We also used immunohistochemistry staining and western blot methodology to evaluate the expression of ASIC3 in dorsal root ganglion (DRG) neurons.</p> <p>Results</p> <p>In comparison with the control, the inflammation group showed significant mechanical hyperalgesia with both intraplantar carrageenan and CFA-induced inflammation. Interestingly, both carrageenan- and CFA-induced hyperalgesia were accompanied by ASIC3 up-regulation in DRG neurons. Furthermore, electroacupuncture (EA) at the ST36 rescued mechanical hyperalgesia through down-regulation of ASIC3 overexpression in both carrageenan- and CFA-induced inflammation.</p> <p>Conclusions</p> <p>In addition, electrical stimulation at the ST36 acupoint can relieve mechanical hyperalgesia by attenuating ASIC3 overexpression.</p

    Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer

    Get PDF
    Prostate cancer is the most frequently diagnosed non-cutaneous tumor of men in Western countries. While surgery is often successful for organ-confined prostate cancer, androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, this therapy is associated with several undesired side-effects, including increased risk of cardiovascular diseases. Shortening the period of androgen ablation therapy may benefit prostate cancer patients. Intermittent Androgen Deprivation therapy improves quality of life, reduces toxicity and medical costs, and delays disease progression in some patients. Cell culture and xenograft studies using androgen receptor (AR)-positive castration-resistant human prostate cancers cells (LNCaP, ARCaP, and PC-3 cells over-expressing AR) suggest that androgens may suppress the growth of AR-rich prostate cancer cells. Androgens cause growth inhibition and G1 cell cycle arrest in these cells by regulating c-Myc, Skp2, and p27Kip via AR. Higher dosages of testosterone cause greater growth inhibition of relapsed tumors. Manipulating androgen/AR signaling may therefore be a potential therapy for AR-positive advanced prostate cancer
    corecore