507 research outputs found

    Construction of the Diploid, Tetraploid and Integrated Diploid-tetraploid Genetic Linkage Maps in Roses Using Simple Sequence Repeat (SSR) Markers

    Get PDF
    This study uses polymorphic microsatellites (SSR) to elucidate the similarities among the diploid and tetraploid rose genomes by comparing their maps and clarifying the predominant inheritance patterns (disomic versus tetrasomic) seen in the tetraploid population. One hundred and eight out of 175 SSRs were polymorphic in both the OBxWOB26 (Old Blush x (‘Basye’s Thornless’ x ‘Old Blush’) diploid backcross population and the GGFC (‘Golden Gate’ x ‘Fragrant Cloud’) tetraploid full-sib population. Of these 69 fluorescently labeled SSRs and 5 morphological traits were used which generated 107 loci and 5 trait loci with 99 diploid population progeny. The tetraploid map was constructed with SSRs and AFLPs with 131 tetraploid progeny using the single dose restriction fragment (SDRF) analysis. The degree of preferential chromosome pairing in the tetraploid population was examined by looking at the segregation ratios among the double-dose markers (DDMs) as well as the ratio of loci in repulsion vs coupling phase using single-dose markers (SDMs). These approaches showed that there was a combination of disomic and tetrasomic inheritance. A diploid, a tetraploid and an integrated diploid-tetraploid genetic linkage map were developed from two populations using JoinMap 4 with the cross pollination option. In the diploid map, 7 integrated linkage groups covered a length of 352.3 cM with an average chromosome size of 50.3 cM. The morphological traits, prickles on stem (prickles), recurrent bloom (RB)) and flower type (Blfo) were mapped on the Chr LG3 which matched with the ICM (Integrated consensus map) published by Spillers et al., (2010). Moreover, 5 out of the 69 SSR markers (RhJ404, H9_B01, RW11E5, RW8B8 and RhE3) were mapped to two or more loci each on different chromosomes of the diploid map. In the tetraploid map, 174 out of 346 (50%) loci of single-dose markers (SDMs) and double-dose markers (DDMs) were mapped on a length of 883.4 cM with 9 linkage groups. Sixty anchor SSR markers were used to join the diploid and tetraploid maps which included 215 loci with a map length of 632 cM. Synteny of common SSRs and morphological traits, prickles, RB, Blfo, powdery mildew resistance (PM) and petal number (PN) on the integrated diploid-tetraploid map with the ICM, the GGFC and the K5 map demonstrated the collinear alignment among these maps

    Effects of human parvovirus B19 VP1 unique region protein on macrophage responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activity of secreted phospholipase A (sPLA2) has been implicated in a wide range of cellular responses. However, little is known about the function of human parvovirus B19-VP1 unique region (VP1u) with sPLA2 activity on macrophage.</p> <p>Methods</p> <p>To investigate the roles of B19-VP1u in response to macrophage, phospholipase A2 activity, cell migration assay, phagocytosis activity, metalloproteinase assay, RT-PCR and immunoblotting were performed.</p> <p>Results</p> <p>In the present study, we report that migration, phagocytosis, IL-6, IL-1β mRNA, and MMP9 activity are significantly increased in RAW264.7 cells by B19-VP1u protein with sPLA2 activity, but not by B19-VP1uD175A protein that is mutated and lacks sPLA2 activity. Additionally, significant increases of phosphorylated ERK1/2 and JNK proteins were detected in macrophages that were treated with B19-VP1u protein, but not when they were treated with B19-VP1uD175A protein.</p> <p>Conclusion</p> <p>Taken together, our experimental results suggest that B19-VP1u with sPLA2 activity affects production of IL-6, IL-1β mRNA, and MMP9 activity, possibly through the involvement of ERK1/2 and JNK signaling pathways. These findings could provide clues in understanding the role of B19-VP1u and its sPLA2 enzymatic activity in B19 infection and B19-related diseases.</p

    New Plasma Separation Glucose Oxidase-based Glucometer in Monitoring of Blood With Different PO2 Levels

    Get PDF
    BackgroundThe PalmLab glucometer is a newly designed plasma separation glucose oxidase (GO)-based glucometer. Past studies have shown that the accuracy of GO-based glucometers is compromised when measurements are taken in patients with high PO2 levels. We performed a two-arm study comparing the fitness of the PalmLab blood glucometer with that of a standard glucose analyzer in monitoring blood glucose levels in pediatric patients, especially when arterial partial pressure of oxygen (PO2) was high.MethodsIn the first arm of the study, arterial blood samples from pediatric patients were measured by the PalmLab blood glucometer and the YSI 2302 Plus Glucose/Lactate analyzer. In the second arm of the study, venous blood samples from adult volunteers were spiked with glucose water to prepare three different levels of glucose (65, 150, and 300mg/dL) and then oxygenated to six levels of PO2 (range, 40–400mmHg). The biases of the PalmLab glucometer were calculated.ResultsA total of 162 samples were collected in the first arm of the study. Results of linear regression showed that the coefficient of determination (R2) between PalmLab glucometer and standard glucose analyzer was 0.9864. Error grid analysis revealed that all the results were within Zone A (clinically accurate estimate zone). The biases between the two systems were low at different PO2 levels. In the second arm of the study, the results were also unaffected by changes in PO2.ConclusionThe PalmLab glucometer provides accurate results in samples with high PO2 and is suitable for measuring arterial glucose levels in pediatric patients

    Overweight worsens apoptosis, neuroinflammation and blood-brain barrier damage after hypoxic ischemia in neonatal brain through JNK hyperactivation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apoptosis, neuroinflammation and blood-brain barrier (BBB) damage affect the susceptibility of the developing brain to hypoxic-ischemic (HI) insults. c-Jun N-terminal kinase (JNK) is an important mediator of insulin resistance in obesity. We hypothesized that neonatal overweight aggravates HI brain damage through JNK hyperactivation-mediated upregulation of neuronal apoptosis, neuroinflammation and BBB leakage in rat pups.</p> <p>Methods</p> <p>Overweight (OF) pups were established by reducing the litter size to 6, and control (NF) pups by keeping the litter size at 12 from postnatal (P) day 1 before HI on P7. Immunohistochemistry and immunoblotting were used to determine the TUNEL-(+) cells and BBB damage, cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP), and phospho-JNK and phospho-Bim<sub>EL </sub>levels. Immunofluorescence was performed to determine the cellular distribution of phospho-JNK.</p> <p>Results</p> <p>Compared with NF pups, OF pups had a significantly heavier body-weight and greater fat deposition on P7. Compared with the NF-HI group, the OF-HI group showed significant increases of TUNEL-(+) cells, cleaved levels of caspase-3 and PARP, and ED1-(+) activated microglia and BBB damage in the cortex 24 hours post-HI. Immunofluorescence of the OF-HI pups showed that activated-caspase 3 expression was found mainly in NeuN-(+) neurons and RECA1-(+) vascular endothelial cells 24 hours post-HI. The OF-HI group also had prolonged escape latency in the Morris water maze test and greater brain-volume loss compared with the NF-HI group when assessed at adulthood. Phospho-JNK and phospho-Bim<sub>EL </sub>levels were higher in OF-HI pups than in NF-HI pups immediately post-HI. JNK activation in OF-HI pups was mainly expressed in neurons, microglia and vascular endothelial cells. Inhibiting JNK activity by AS601245 caused more attenuation of cleaved caspase-3 and PARP, a greater reduction of microglial activation and BBB damage post-HI, and significantly reduced brain damage in OF-HI than in NF-HI pups.</p> <p>Conclusions</p> <p>Neonatal overweight increased HI-induced neuronal apoptosis, microglial activation and BBB damage, and aggravated HI brain damage in rat pups through JNK hyperactivation.</p

    Pioglitazone retrieves hepatic antioxidant DNA repair in a mice model of high fat diet

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pioglitazone was reported to improve hepatic steatosis and necroinflammation in human studies. To investigate whether the hepato-protective effect of pioglitazone was associated with an improvement of antioxidant defense mechanism, oxidative DNA damage and repair activity were determined in a high fat diet model. Male C57BL/6 mice were respectively fed with a 30% fat diet, the same diet with pioglitazone 100 mg/kg/day, or a chow diet as control for 8 weeks. Tissue oxidative stress was indicated by malondialdehyde concentration. Oxidative DNA damage was detected by immunohistochemical 8-oxoG staining. Enzymatic antioxidant defense was detected by the real-time PCR of superoxide dismutase (<it>Sod1, Sod2</it>) and DNA glycosylase (<it>Ogg1, MutY</it>). Oxidative DNA repair was detected by immunohistochemical staining and western blotting of OGG1 expression.</p> <p>Results</p> <p>Our results show that hepatic steatosis was induced by a high-fat diet and improved by adding pioglitazone. Malondialdehyde concentration and 8-oxoG staining were strongly increased in the high-fat diet group, but attenuated by pioglitazone. Gene expressions of antioxidant defense mechanism: <it>Sod1, Sod2, Ogg1 </it>and <it>MutY </it>significantly decreased in the high-fat diet group but reversed by pioglitazone co-administration.</p> <p>Conclusion</p> <p>The attenuation of hepatic oxidative DNA damage by pioglitazone in a high-fat diet may be mediated by up-regulation of the antioxidant defense mechanism and oxidative DNA repair activity. The diminution of oxidative damage may explain the clinical benefit of pioglitazone treatment in patients with non-alcoholic fatty liver disease.</p
    • …
    corecore