770 research outputs found

    Characterizing Intermittency of 4-Hz Quasi-periodic Oscillation in XTE J1550-564 using Hilbert-Huang Transform

    Get PDF
    We present the time-frequency analysis results based on the Hilbert-Huang transform (HHT) for the evolution of a 4-Hz low-frequency quasi-periodic oscillation (LFQPO) around the black hole X-ray binary XTE J1550-564. The origin of LFQPOs is still debated. To understand the cause of the peak broadening, we utilized a recently developed time-frequency analysis, HHT, for tracking the evolution of the 4-Hz LFQPO from XTE J1550 564. By adaptively decomposing the ~4-Hz oscillatory component from the light curve and acquiring its instantaneous frequency, the Hilbert spectrum illustrates that the LFQPO is composed of a series of intermittent oscillations appearing occasionally between 3 Hz and 5 Hz. We further characterized this intermittency by computing the confidence limits of the instantaneous amplitudes of the intermittent oscillations, and constructed both the distributions of the QPO's high and low amplitude durations, which are the time intervals with and without significant ~4-Hz oscillations, respectively. The mean high amplitude duration is 1.45 s and 90% of the oscillation segments have lifetimes below 3.1 s. The mean low amplitude duration is 0.42 s and 90% of these segments are shorter than 0.73 s. In addition, these intermittent oscillations exhibit a correlation between the oscillation's rms amplitude and mean count rate. This correlation could be analogous to the linear rms-flux relation found in the 4-Hz LFQPO through Fourier analysis. We conclude that the LFQPO peak in the power spectrum is broadened owing to intermittent oscillations with varying frequencies, which could be explained by using the Lense-Thirring precession model.Comment: 27 pages, 9 figures, accepted for publication in The Astrophysical Journa

    Experimental verification of a wireless sensing and control system for structural control using MR dampers

    Full text link
    The performance aspects of a wireless ‘active’ sensor, including the reliability of the wireless communication channel for real-time data delivery and its application to feedback structural control, are explored in this study. First, the control of magnetorheological (MR) dampers using wireless sensors is examined. Second, the application of the MR-damper to actively control a half-scale three-storey steel building excited at its base by shaking table is studied using a wireless control system assembled from wireless active sensors. With an MR damper installed on each floor (three dampers total), structural responses during seismic excitation are measured by the system's wireless active sensors and wirelessly communicated to each other; upon receipt of response data, the wireless sensor interfaced to each MR damper calculates a desired control action using an LQG controller implemented in the wireless sensor's computational core. In this system, the wireless active sensor is responsible for the reception of response data, determination of optimal control forces, and the issuing of command signals to the MR damper. Various control solutions are formulated in this study and embedded in the wireless control system including centralized and decentralized control algorithms. Copyright © 2007 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56121/1/682_ftp.pd

    Fascia tissue engineering with human adipose-derived stem cells in a murine model: Implications for pelvic floor reconstruction

    Get PDF
    Background/PurposeMesh-augmented vaginal surgery for treatment of pelvic organ prolapse (POP) does not meet patients' needs. This study aims to test the hypothesis that fascia tissue engineering using adipose-derived stem cells (ADSCs) might be a potential therapeutic strategy for reconstructing the pelvic floor.MethodsHuman ADSCs were isolated, differentiated, and characterized in vitro. Both ADSCs and fibroblastic-differentiated ADSCs were used to fabricate tissue-engineered fascia equivalents, which were then transplanted under the back skin of experimental nude mice.ResultsADSCs prepared in our laboratory were characterized as a group of mesenchymal stem cells. In vitro fibroblastic differentiation of ADSCs showed significantly increased gene expression of cellular collagen type I and elastin (p < 0.05) concomitantly with morphological changes. By contrast, ADSCs cultured in control medium did not demonstrate these changes. Both of the engrafted fascia equivalents could be traced up to 12 weeks after transplantation in the subsequent animal study. Furthermore, the histological outcomes differed with a thin (111.0 ± 19.8 μm) lamellar connective tissue or a thick (414.3 ± 114.9 μm) adhesive fibrous tissue formation between the transplantation of ADSCs and fibroblastic-differentiated ADSCs, respectively. Nonetheless, the implantation of a scaffold without cell seeding (the control group) resulted in a thin (102.0 ± 17.1 μm) fibrotic band and tissue contracture.ConclusionOur results suggest the ADSC-seeded implant is better than the implant alone in enhancing tissue regeneration after transplantation. ADSCs with or without fibroblastic differentiation might have a potential but different role in fascia tissue engineering to repair POP in the future

    Reference Architecture for Collaborative Design

    Get PDF
    Issues and themes of Collaborative Design (CD) addressed by research done so far are so extensive that when running a project of collaborative design, people may lack directions or guidelines to support the whole picture. Hence, developing reference architecture for CD is important and necessary in the academic and the empirical fields. Reference architecture provides the systematic, elementary skeleton and can be extended and adapted to diverse, changing environments. It also provides a comprehensive framework and enables practices implemented more thoroughly and easily. The reference architecture developed in this re-search is formed along three dimensions: decision aspect, design stage, and collaboration scope. There are five elements in the dimension of decision aspect: (1) participant, (2) product, (3) process, (4) organization, and (5) information. The dimension of design stage includes three stages: (1) planning and concepting, (2) system-level design and detail design, and (3) testing and prototyping. The dimension of collaboration scope includes three types of collaboration: (1) cross-functional, (2) cross-company, and (3) cross-industry. Because of the three reference dimensions, a cubic architecture is developed. The cubic reference architecture helps decision-makers in dealing with implementing a CD project or activity. It also serves as a guideline for CD system developers or people involved in the design collaboration to figure out their own responsibility functions and their relations with other members. Demonstration of how to use the reference architecture in developing design collaboration activities and specifying the details for cross-company CD is also provided in this research
    • …
    corecore