105 research outputs found

    Numerical and in vitro experimental study of arterial deformation and buckling under hypertension and atherosclerotic conditions

    Get PDF
    Cardiovascular diseases remain the major cause of mortality worldwide. Pathologies of the vasculature such as atherosclerosis are often related to biochemical and genetic factors as well as mechanical effects that strongly change the function and shape of arteries. The present work is part of a general research project which aims to better understand the mechanical mechanisms responsible for atherosclerotic plaque formation and rupture. The chosen approach is to use numerical fluidstructure interaction (FSI) methods to study the relative influence of hemodynamic parameters on the structural stresses generated on plaques. To this aim, a numerical study of a simplified straight vessel exposed to lumen pressure was investigated under quiescent and steady flow conditions. As the internal pressure or the steady velocity increases, the vessel buckles lead-ing to a non-linear large deformation behaviour. The results have been validated using theoretical predictions for the buckling thresholds. Further studies on idealised cardiovascular conditions such as stenosis (i.e., lumen constriction) or aneurysm like (i.e., arterial wall expansion) formation have also been performed

    Haemodynamical stress in mouse aortic arch with atherosclerotic plaques: Preliminary study of plaque progression

    Get PDF
    Atherosclerotic plaques develop at particular sites in the arterial tree, and this regional localisation depends largely on haemodynamic parameters (such as wall shear stress; WSS) as described in the literature. Plaque rupture can result in heart attack or stroke and hence understanding the development and vulnerability of atherosclerotic plaques is critically important. The purpose of this study is to characterise the haemodynamics of blood flow in the mouse aortic arch using numerical modelling. The geometries are digitalised from synchrotron imaging and realistic pulsatile blood flow is considered under rigid wall assumptions. Two cases are considered; arteries with and without plaque. Mice that are fed under fat diet present plaques in the aortic arch whose size is dependent on the number of weeks under the diet. The plaque distribution in the region is however relatively constant through the different samples. This result underlines the influence of the geometry and consequently of the wall shear stresses for plaque formation with plaques growing in region of relative low shear stresses. A discussion of the flow field in real geometry in the presence and absence of plaques is conducted. The presence of plaques was shown to alter the blood flow and hence WSS distribution, with regions of localised high WSS, mainly on the wall of the brachiocephalic artery where luminal narrowing is most pronounced. In addition, arch plaques are shown to induce recirculation in the blood flow, a phenomenon with potential influence on the progression of the plaques. The oscillatory shear index and the relative residence time have been calculated on the geometry with plaques to show the presence of this recirculation in the arch, an approach that may be useful for future studies on plaque progression

    Three-dimensional numerical simulation of blood flow in mouse aortic arch around atherosclerotic plaques

    Get PDF
    Atherosclerosis is a progressive disease, involving the build-up of lipid streaks in artery walls, leading to plaques. Understanding the development of atherosclerosis and plaque vulnerability is critically important since plaque rupture can result in heart attack or stroke. Plaques can be divided into two distinct types: those likely to rupture (vulnerable) or less likely to rupture (stable). In the last decade, researchers have been interested in studying the influence of the mechanical effects (blood shear stress, pressure forces and structural stress) on the plaque formation, progression and rupture processes but no general agreement has been found. The purpose of the present work is to include more realistic conditions for the numerical calculations of the blood flow by implementing real geometries with plaques in the numerical model. Hemodynamical parameters are studied in both diseased and healthy configurations. The healthy configuration is obtained by removing numerically the plaques from three dimensional geometries obtained by micro-computed tomography. A new hemodynamical parameter is also introduced to relate the location of plaques to the characteristics of the flow in the healthy configuration

    Erythrocyte hemolysis and hemoglobin oxidation promote ferric chloride-induced vascular injury,” The

    Get PDF
    Abstract The release of redox-active iron and heme into the blood-stream is toxic to the vasculature, contributing to the development of vascular diseases. How iron induces endothelial injury remains ill defined. To investigate this, we developed a novel ex vivo perfusion chamber that enables direct analysis of the effects of FeCl3 on the vasculature. We demonstrate that FeCl3 treatment of isolated mouse aorta, perfused with whole blood, was associated with endothelial denudation, collagen exposure, and occlusive thrombus formation. Strikingly exposing vessels to FeCl3 alone, in the absence of perfused blood, was associated with only minor vascular injury. Whole blood fractionation studies revealed that FeCl3-induced vascular injury was red blood cell (erythrocyte)-dependent, requiring erythrocyte hemolysis and hemoglobin oxidation for endothelial denudation

    Serum Amyloid A Stimulates Vascular and Renal Dysfunction in Apolipoprotein E-Deficient Mice Fed a Normal Chow Diet

    Get PDF
    Elevated serum amyloid A (SAA) levels may promote endothelial dysfunction, which is linked to cardiovascular and renal pathologies. We investigated the effect of SAA on vascular and renal function in apolipoprotein E-deficient (ApoE−/−) mice. Male ApoE−/− mice received vehicle (control), low-level lipopolysaccharide (LPS), or recombinant human SAA by i.p. injection every third day for 2 weeks. Heart, aorta and kidney were harvested between 3 days and 18 weeks after treatment. SAA administration increased vascular cell adhesion molecule (VCAM)-1 expression and circulating monocyte chemotactic protein (MCP)-1 and decreased aortic cyclic guanosine monophosphate (cGMP), consistent with SAA inhibiting nitric oxide bioactivity. In addition, binding of labeled leukocytes to excised aorta increased as monitored using an ex vivo leukocyte adhesion assay. Renal injury was evident 4 weeks after commencement of SAA treatment, manifesting as increased plasma urea, urinary protein, oxidized lipids, urinary kidney injury molecule (KIM)-1 and multiple cytokines and chemokines in kidney tissue, relative to controls. Phosphorylation of nuclear-factor-kappa-beta (NFκB-p-P65), tissue factor (TF), and macrophage recruitment increased in kidneys from ApoE−/− mice 4 weeks after SAA treatment, confirming that SAA elicited a pro-inflammatory and pro-thrombotic phenotype. These data indicate that SAA impairs endothelial and renal function in ApoE−/− mice in the absence of a high-fat diet

    Anakinra reduces blood pressure and renal fibrosis in one kidney/DOCA/salt-induced hypertension

    Get PDF
    OBJECTIVE: To determine whether a clinically-utilised IL-1 receptor antagonist, anakinra, reduces renal inflammation, structural damage and blood pressure (BP) in mice with established hypertension. METHODS: Hypertension was induced in male mice by uninephrectomy, deoxycorticosterone acetate (2.4mg/d,s.c.) and replacement of drinking water with saline (1K/DOCA/salt). Control mice received uninephrectomy, a placebo pellet and normal drinking water. 10days post-surgery, mice commenced treatment with anakinra (75mg/kg/d, i.p.) or vehicle (0.9% saline, i.p.) for 11 days. Systolic BP was measured by tail cuff while qPCR, immunohistochemistry and flow cytometry were used to measure inflammatory markers, collagen and immune cell infiltration in the kidneys. RESULTS: By 10 days post-surgery, 1K/DOCA/salt-treated mice displayed elevated systolic BP (148.3+/-2.4mmHg) compared to control mice (121.7+/-2.7mmHg; n=18, P\u3c0.0001). The intervention with anakinra reduced BP in 1K/DOCA/salt-treated mice by approximately 20mmHg (n=16, P\u3c0.05), but had no effect in controls. In 1K/DOCA/salt-treated mice, anakinra modestly reduced ( approximately 30%) renal expression of some (CCL5, CCL2; n=7-8; P\u3c0.05) but not all (ICAM-1, IL-6) inflammatory markers, and had no effect on immune cell infiltration (n=7-8, P \u3e 0.05). Anakinra reduced renal collagen content (n=6, P\u3c0.01) but paradoxically appeared to exacerbate the renal and glomerular hypertrophy (n=8-9, P\u3c0.001) that accompanied 1K/DOCA/salt-induced hypertension. CONCLUSION: Despite its anti-hypertensive and renal anti-fibrotic actions, anakinra had minimal effects on inflammation and leukocyte infiltration in mice with 1K/DOCA/salt-induced hypertension. Future studies will assess whether the anti-hypertensive actions of anakinra are mediated by protective actions in other BP-regulating or salt-handling organs such as the arteries, skin and brain

    High intraluminal pressure induces inflammation

    No full text

    Cyclo-Oxygenase (COX) Inhibitors and Cardiovascular Risk: Are Non-Steroidal Anti-Inflammatory Drugs Really Anti-Inflammatory?

    No full text
    Cyclo-oxygenase (COX) inhibitors are among the most commonly used drugs in the western world for their anti-inflammatory and analgesic effects. However, they are also well-known to increase the risk of coronary events. This area is of renewed significance given alarming new evidence suggesting this effect can occur even with acute usage. This contrasts with the well-established usage of aspirin as a mainstay for cardiovascular prophylaxis, as well as overwhelming evidence that COX inhibition induces vasodilation and is protective for vascular function. Here, we present an updated review of the preclinical and clinical literature regarding the cardiotoxicity of COX inhibitors. While studies to date have focussed on the role of COX in influencing renal and vascular function, we suggest an interaction between prostanoids and T cells may be a novel factor, mediating elevated cardiovascular disease risk with NSAID use
    corecore