4 research outputs found

    Prieurianin Causes Weight Loss in Diet-Induced Obese Mice and Inhibits Adipogenesis in Cultured Preadipocytes

    Get PDF
    The global increase in the incidence of obesity has emerged as one of the most serious public health risks in recent years. Despite the enormity of the obesity pandemic, there are currently only two FDA-approved therapies for its treatment and these drugs exhibit modest effi cacy and have limiting side effects. Prieurianin is a plant limonoid product that deters feeding in insect larvae. We investigated in this study the effects of prieurianin on weight loss and adipogenesis. Our results showed that prieurianin causes weight loss by reducing energy intake in obese mice on highcalorie diet. We also found that prieurianin is anti-adipogenic in cultured preadipocytes and adipocytes by inhibiting proliferation and differentiation of preadipocytes into adipocytes, and induces either dedifferentiation or delipidation of mature adipocytes. Whether prieurianin can potentially be used for obesity treatment in human warrants further investigation

    Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects

    No full text
    Background And Aims: Susceptibility genes and the underlying mechanisms for the majority of risk loci identified by genome-wide association studies (GWAS) for colorectal cancer (CRC) risk remain largely unknown. We conducted a transcriptome-wide association study (TWAS) to identify putative susceptibility genes. Methods: Gene-expression prediction models were built using transcriptome and genetic data from the 284 normal transverse colon tissues of European descendants from the Genotype-Tissue Expression (GTEx), and model performance was evaluated using data from The Cancer Genome Atlas (n = 355). We applied the gene-expression prediction models and GWAS data to evaluate associations of genetically predicted gene-expression with CRC risk in 58,131 CRC cases and 67,347 controls of European ancestry. Dual-luciferase reporter assays and knockdown experiments in CRC cells and tumor xenografts were conducted. Results: We identified 25 genes associated with CRC risk at a Bonferroni-corrected threshold of P –6, including genes in 4 novel loci, PYGL (14q22.1), RPL28 (19q13.42), CAPN12 (19q13.2), MYH7B (20q11.22), and MAP1L3CA (20q11.22). In 9 known GWAS-identified loci, we uncovered 9 genes that have not been reported previously, whereas 4 genes remained statistically significant after adjusting for the lead risk variant of the locus. Through colocalization analysis in GWAS loci, we additionally identified 12 putative susceptibility genes that were supported by TWAS analysis at P <.01. We showed that risk allele of the lead risk variant rs1741640 affected the promoter activity of CABLES2. Knockdown experiments confirmed that CABLES2 plays a vital role in colorectal carcinogenesis. Conclusions: Our study reveals new putative susceptibility genes and provides new insight into the biological mechanisms underlying CRC development.</p
    corecore