282 research outputs found

    Efficient simulation of strong system-environment interactions

    Full text link
    Multi-component quantum systems in strong interaction with their environment are receiving increasing attention due to their importance in a variety of contexts, ranging from solid state quantum information processing to the quantum dynamics of bio-molecular aggregates. Unfortunately, these systems are difficult to simulate as the system-bath interactions cannot be treated perturbatively and standard approaches are invalid or inefficient. Here we combine the time dependent density matrix renormalization group methods with techniques from the theory of orthogonal polynomials to provide an efficient method for simulating open quantum systems, including spin-boson models and their generalisations to multi-component systems

    A generalized multi-polaron expansion for the spin-boson model: Environmental entanglement and the biased two-state system

    Full text link
    We develop a systematic variational coherent state expansion for the many-body ground state of the spin-boson model, in which a quantum two-level system is coupled to a continuum of harmonic oscillators. Energetic constraints at the heart of this technique are rationalized in terms of polarons (displacements of the bath states in agreement with classical expectations) and antipolarons (counter-displacements due to quantum tunneling effects). We present a comprehensive study of the ground state two-level system population and coherence as a function of tunneling amplitude, dissipation strength, and bias (akin to asymmetry of the double well potential defining the two-state system). The entanglement among the different environmental modes is investigated by looking at spectroscopic signatures of the bipartite entanglement entropy between a given environmental mode and all the other modes. We observe a drastic change in behavior of this entropy for increasing dissipation, indicative of the entangled nature of the environmental states. In addition, the entropy spreads over a large energy range at strong dissipation, a testimony to the wide entanglement window characterizing the underlying Kondo state. Finally, comparisons to accurate numerical renormalization group calculations and to the exact Bethe Ansatz solution of the model demonstrate the rapid convergence of our variationally-optimized multi-polaron expansion, suggesting that it should also be a useful tool for dissipative models of greater complexity, as relevant for numerous systems of interest in quantum physics and chemistry.Comment: 17 pages, 14 figure

    Intermediate scattering function and quantum recoil in non-Markovian quantum diffusion

    Get PDF
    Exact expressions are derived for the intermediate scattering function (ISF) of a quantum particle diffusing in a harmonic potential and linearly coupled to a harmonic bath. The results are valid for arbitrary strength and spectral density of the coupling. The general, exact non-Markovian result is expressed in terms of the classical velocity autocorrelation function, which represents an accumulated phase during a scattering event. The imaginary part of the exponent of the ISF is proportional to the accumulated phase, which is an antisymmetric function of the correlation time tt. The expressions extend previous results given in the quantum Langevin framework where the classical response of the bath was taken as Markovian. For a special case of non-Markovian friction, where the friction kernel decays exponentially in time rather than instantaneously, we provide exact results relating to unconfined quantum diffusion, and identify general features that allow insight to be exported to more complex examples. The accumulated phase as a function of the t has a universal gradient at the origin, depending only on the mass of the diffusing system particle. At large t the accumulated phase reaches a constant limit that depends only on the classical diffusion coefficient and is therefore independent of the detailed memory properties of the friction kernel. Non-Markovian properties of the friction kernel are encoded in the details of how the accumulated phase switches from its tt\rightarrow -\infty to its tt\rightarrow -\infty limit, subject to the constraint of the universal gradient. When memory effects are significant, the transition from one limit to the other becomes non-monotonic, owing to oscillations in the classical velocity autocorrelation. The result is interpreted in terms of a solvent caging effect, in which slowly fluctuating bath modes create transient wells for the system particle.PT thanks the EPSRC for doctoral funding under the award reference 1363145, which enabled the majority of the present work
    corecore