251 research outputs found
Walking school buses as a form of active transportation for children : A review of the evidence
ABSTRACT
BACKGROUND: Walking School Buses (WSBs) offer a potentially healthier way for children to get to school whilst reducing traffic congestion. A number of pressing societal challenges make it timely to evaluate evidence of their value.
METHODS: Studies that focused solely on WSBs were identified through online and manual literature searches. Twelve WSB studies involving a total of 9173 children were reviewed. Study aims, designs, methods, outcomes, and barriers and facilitators were examined.
RESULTS: WSBs were found to be associated with increased prevalence of walking to school and general activity levels though not always significantly. Time constraints emerged as barriers to WSBs, impacting on recruitment of volunteers and children to the WSBs. Facilitators of WSBs included children enjoying socializing and interacting with the environment.
CONCLUSIONS: Preliminary evidence of the health value of WSBs was demonstrated, along with recommendations for the design of future studies. By tackling barriers of time constraints, volunteer recruitment and parents’ safety concerns whilst at the same time, increasing convenience and time savings for families, future WSBs are likely to be more sustainable and taken up by more schools. Implications for future innovation in school health were identified
Comparison of next-generation sequencing (NGS) and next-generation flow (NGF) for minimal residual disease (MRD) assessment in multiple myeloma
Detecting persistent minimal residual disease (MRD) allows the identification of patients with an increased risk of relapse and death. In this study, we have evaluated MRD 3 months after transplantation in 106 myeloma patients using a commercial next-generation sequencing (NGS) strategy (LymphoTrack®), and compared the results with next-generation flow (NGF, EuroFlow). The use of different marrow pulls and the need of concentrating samples for NGS biased the applicability for MRD evaluation and favored NGF. Despite that, correlation between NGS and NGF was high (R = 0.905). The 3-year progression-free survival (PFS) rates by NGS and NGF were longer for undetectable vs. positive patients (NGS: 88.7% vs. 56.6%; NGF: 91.4% vs. 50%; p < 0.001 for both comparisons), which resulted in a 3-year overall survival (OS) advantage (NGS: 96.2% vs. 77.3%; NGF: 96.6% vs. 74.9%, p < 0.01 for both comparisons). In the Cox regression model, NGS and NGF negativity had similar results but favoring the latter in PFS (HR: 0.20, 95% CI: 0.09-0.45, p < 0.001) and OS (HR: 0.21, 95% CI: 0.06-0.75, p = 0.02). All these results reinforce the role of MRD detection by different strategies in patient prognosis and highlight the use of MRD as an endpoint for multiple myeloma treatment
Pck1 Gene Silencing in the Liver Improves Glycemia Control, Insulin Sensitivity, and Dyslipidemia in db/db Mice
OBJECTIVE—Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C; encoded by Pck1) catalyzes the first committed step in gluconeogenesis. Extensive evidence demonstrates a direct correlation between PEPCK-C activity and glycemia control. Therefore, we aimed to evaluate the metabolic impact and their underlying mechanisms of knocking down hepatic PEPCK-C in a type 2 diabetic model
Large genomic rearrangements in the CFTR gene contribute to CBAVD
<p>Abstract</p> <p>Background</p> <p>By performing extensive scanning of whole coding and flanking sequences of the <it>CFTR (Cystic Fibrosis Transmembrane Conductance Regulator</it>) gene, we had previously identified point mutations in 167 out of 182 (91.7%) males with isolated congenital bilateral absence of the vas deferens (CBAVD). Conventional PCR-based methods of mutation analysis do not detect gross DNA lesions. In this study, we looked for large rearrangements within the whole <it>CFTR </it>locus in the 32 CBAVD patients with only one or no mutation.</p> <p>Methods</p> <p>We developed a semi-quantitative fluorescent PCR assay (SQF-PCR), which relies on the comparison of the fluorescent profiles of multiplex PCR fragments obtained from different DNA samples. We confirmed the gross alterations by junction fragment amplification and identified their breakpoints by direct sequencing.</p> <p>Results</p> <p>We detected two large genomic heterozygous deletions, one encompassing exon 2 (c.54-5811_c.164+2186del8108ins182) [or <it>CFTRdele2</it>], the other removing exons 22 to 24 (c.3964-3890_c.4443+3143del9454ins5) [or <it>CFTRdele 22_24</it>], in two males carrying a typical CBAVD mutation on the other parental <it>CFTR </it>allele. We present the first bioinformatic tool for exon phasing of the <it>CFTR </it>gene, which can help to rename the exons and the nomenclature of small mutations according to international recommendations and to predict the consequence of large rearrangements on the open reading frame.</p> <p>Conclusion</p> <p>Identification of large rearrangements further expands the <it>CFTR </it>mutational spectrum in CBAVD and should now be systematically investigated. We have designed a simple test to specifically detect the presence or absence of the two rearrangements identified in this study.</p
Localization of a bacterial group II intron-encoded protein in human cells
Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells.This work was supported by research grants CSD 2009–0006 from the Consolider-Ingenio, BIO2011-24401 and BIO2014-51953-P from the Spanish Ministerio de Economía y Competitividad all including ERDF (European Regional Development Funds). We thank Dr. Antonio Barrientos Durán for technical advice. MRC was supported by an FPI Ph.D grant. J.L.G.P´s laboratory is supported by CICE-FEDER-P09-CTS-4980, CICE-FEDER-P12-CTS-2256, Plan Nacional de I+D+I 2008–2011 and 2013–2016 (FIS-FEDER-PI11/01489 and FIS-FEDER-PI14/02152), PCIN-2014-115-ERA-NET NEURON II, the European Research Council (ERC-Consolidator ERC-STG-2012-233764) and by an International Early Career Scientist grant from the Howard Hughes Medical Institute (IECS-55007420).Peer Reviewe
Effects of a school-based intervention on active commuting to school and health-related fitness
Background: Active commuting to school has declined over time, and interventions are needed to reverse this
trend. The main objective was to investigate the effects of a school-based intervention on active commuting to
school and health-related fitness in school-age children of Southern Spain.
Methods: A total of 494 children aged 8 to 11 years were invited to participate in the study. The schools were
non-randomly allocated (i.e., school level allocation) into the experimental group (EG) or the control group (CG).
The EG received an intervention program for 6 months (a monthly activity) focused on increasing the level of active
commuting to school and mainly targeting children’s perceptions and attitudes. Active commuting to school and
health-related fitness (i.e., cardiorespiratory fitness, muscular fitness and speed-agility), were measured at baseline
and at the end of the intervention. Children with valid data on commuting to school at baseline and follow-up, sex,
age and distance from home to school were included in the final analysis (n = 251). Data was analyzed through a
factorial ANOVA and the Bonferroni post-hoc test.
Results: At follow up, the EG had higher rates of cycling to school than CG for boys only (p = 0.04), but not for
walking to school for boys or girls. The EG avoided increases in the rates of passive commuting at follow up, which
increased in the CG among girls for car (MD = 1.77; SE = 0.714; p = 0.010) and bus (MD = 1.77; SE = 0.714; p = 0.010)
modes. Moreover, we observed significant interactions and main effects between independent variables (study group,
sex and assessment time point) on health-related fitness (p < 0.05) over the 6-month period between groups, with
higher values in the control group (mainly in boys).
Conclusion: A school-based intervention focused on increasing active commuting to school was associated with
increases in rates of cycling to school among boys, but not for walking to school or health-related fitness. However, the
school-based intervention avoided increases in rates of passive commuting in the experimental group, which were
significantly increased in girls of the control group
What are the health benefits of active travel? A systematic review of trials and cohort studies.
BACKGROUND: Increasing active travel (primarily walking and cycling) has been widely advocated for reducing obesity levels and achieving other population health benefits. However, the strength of evidence underpinning this strategy is unclear. This study aimed to assess the evidence that active travel has significant health benefits. METHODS: The study design was a systematic review of (i) non-randomised and randomised controlled trials, and (ii) prospective observational studies examining either (a) the effects of interventions to promote active travel or (b) the association between active travel and health outcomes. Reports of studies were identified by searching 11 electronic databases, websites, reference lists and papers identified by experts in the field. Prospective observational and intervention studies measuring any health outcome of active travel in the general population were included. Studies of patient groups were excluded. RESULTS: Twenty-four studies from 12 countries were included, of which six were studies conducted with children. Five studies evaluated active travel interventions. Nineteen were prospective cohort studies which did not evaluate the impact of a specific intervention. No studies were identified with obesity as an outcome in adults; one of five prospective cohort studies in children found an association between obesity and active travel. Small positive effects on other health outcomes were found in five intervention studies, but these were all at risk of selection bias. Modest benefits for other health outcomes were identified in five prospective studies. There is suggestive evidence that active travel may have a positive effect on diabetes prevention, which may be an important area for future research. CONCLUSIONS: Active travel may have positive effects on health outcomes, but there is little robust evidence to date of the effectiveness of active transport interventions for reducing obesity. Future evaluations of such interventions should include an assessment of their impacts on obesity and other health outcomes
Chitosan Modification of Adenovirus to Modify Transfection Efficiency in Bovine Corneal Epithelial Cells
BACKGROUND: The purpose of this study is to modulate the transfection efficiency of adenovirus (Ad) on the cornea by the covalent attachment of chitosan on adenoviral capsids via a thioether linkage between chitosan modified with 2-iminothiolane and Ad cross-linked with N-[gamma-maleimidobutyryloxy]succinimide ester (GMBS). METHODOLOGY/PRINCIPAL FINDINGS: Modified Ad was obtained by reaction with the heterobifunctional crosslinking reagent, GMBS, producing maleimide-modified Ad (Ad-GMBS). Then, the chitosan-SH was conjugated to Ad-GMBS via a thioether bond at different ratios of Ad to GMBS to chitosan-SH. The sizes and zeta potentials of unmodified Ad and chitosan-modified Ads were measured, and the morphologies of the virus particles were observed under transmission electron microscope. Primary cultures of bovine corneal epithelial cells were transfected with Ads and chitosan-modified Ads in the absence or presence of anti-adenovirus antibodies. Chitosan modification did not significantly change the particle size of Ad, but the surface charge of Ad increased significantly from -24.3 mV to nearly neutral. Furthermore, primary cultures of bovine corneal epithelial cells were transfected with Ad or chitosan-modified Ad in the absence or presence of anti-Ad antibodies. The transfection efficiency was attenuated gradually with increasing amounts of GMBS. However, incorporation of chitosan partly restored transfection activity and rendered the modified antibody resistant to antibody neutralization. CONCLUSIONS/SIGNIFICANCE: Chitosan can provide a platform for chemical modification of Ad, which offers potential for further in vivo applications
- …