55 research outputs found

    Inhomogeneous turbulence in the vicinity of a large scale coherent vortex

    Full text link
    We study the statistics of turbulent velocity fluctuations in the neighbourhood of a strong large scale vortex at very large Reynolds number. At each distance from the vortex core, we observe that the velocity spectrum has a power law ``inertial range'' of scales and that intermittency -- defined as the variation of the probability density function (PDF) of velocity increments as the length of the increment is varied -- is also present. We show that the spectrum scaling exponents and intermittency characteristics vary with the distance to the vortex. They are also influenced by the large scale dynamics of the vortex.Comment: submitted to europhys lett, 6 pages, 5 figure

    New subgrid-scale models for large-eddy simulation of Rayleigh-BĂ©nard convection

    Get PDF
    Published under licence in Journal of Physics: Conference Series by IOP Publishing Ltd. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.At the crossroad between flow topology analysis and the theory of turbulence, a new eddy-viscosity model for Large-eddy simulation has been recently proposed by Trias et al.[PoF, 27, 065103 (2015)]. The S3PQR-model has the proper cubic near-wall behaviour and no intrinsic limitations for statistically inhomogeneous flows. In this work, the new model has been tested for an air turbulent Rayleigh-Benard convection in a rectangular cell of aspect ratio unity and n span-wise open-ended distance. To do so, direct numerical simulation has been carried out at two Rayleigh numbers Ra = 108 and 1010, to assess the model performance and investigate a priori the effect of the turbulent Prandtl number. Using an approximate formula based on the Taylor series expansion, the turbulent Prandtl number has been calculated and revealed a constant and Ra-independent value across the bulk region equals to 0.55. It is found that the turbulent components of eddy-viscosity and eddy-diffusivity are positively prevalent to maintain a turbulent wind essentially driven by the mean buoyant force at the sidewalls. On the other hand, the new eddy-viscosity model is preliminary tested for the case of Ra = 108 and showed overestimation of heat flux within the boundary layer but fairly good prediction of turbulent kinetics at this moderate turbulent flow.Peer ReviewedPostprint (published version

    High-Rayleigh-Number Convection in a Vertical Channel

    Full text link

    Large scale dynamics in turbulent Rayleigh-Benard convection

    Get PDF
    The progress in our understanding of several aspects of turbulent Rayleigh-Benard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the kinetic boundary layers scale with Ra and Pr. Non-Oberbeck-Boussinesq effects and the dynamics of the large-scale convection-roll are addressed as well. The review ends with a list of challenges for future research on the turbulent Rayleigh-Benard system.Comment: Review article, 34 pages, 13 figures, Rev. Mod. Phys. 81, in press (2009

    A rotating annulus driven by localized convective forcing: a new atmosphere-like experiment

    Get PDF
    We present an experimental study of flows in a cylindrical rotating annulus convectively forced by local heating in an annular ring at the bottom near the external wall and via a cooled circular disk near the axis at the top surface of the annulus. This new configuration is distinct from the classical thermally-driven annulus analogue of the atmosphere circulation, in which thermal forcing is applied uniformly on the sidewalls, but with a similar aim to investigate the baroclinic instability of a rotating, stratified flow subject to zonally symmetric forcing. Two vertically and horizontally displaced heat sources/sinks are arranged so that, in the absence of background rotation, statically unstable Rayleigh-Bénard convection would be induced above the source and beneath the sink, thereby relaxing strong constraints placed on background temperature gradients in previous experimental configurations based on the conventional rotating annulus. This better emulates local vigorous convection in the tropics and polar regions of the atmosphere whilst also allowing stably-stratified baroclinic motion in the central zone of the annulus, as in midlatitude regions in the Earth’s atmosphere. Regimes of flow are identified, depending mainly upon control parameters that in turn depend on rotation rate and the strength of differential heating. Several regimes exhibit baroclinically unstable flows which are qualitatively similar to those previously observed in the classical thermally-driven annulus, However, in contrast to the classical configuration, they typically exhibit more spatiotemporal complexity. Thus, several regimes of flow demonstrate the equilibrated co-existence of, and interaction between, free convection and baroclinic wave modes. These new features were not previously observed in the classical annulus and validate the new setup as a tool for exploring fundamental atmosphere-like dynamics in a more realistic framework. Thermal structure in the fluid is investigated and found to be qualitatively consistent with previous numerical results, with nearly isothermal conditions respectively above and below the heat source and sink, and stably-stratified, sloping isotherms in the near-adiabatic interior

    New perspectives in turbulent Rayleigh-BĂ©nard convection

    Full text link

    New perspectives in turbulent Rayleigh-BĂ©nard convection

    No full text
    Recent experimental, numerical and theoretical advances in turbulent Rayleigh-BĂ©nard convection are presented. Particular emphasis is given to the physics and structure of the thermal and velocity boundary layers which play a key role for the better understanding of the turbulent transport of heat and momentum in convection at high and very high Rayleigh numbers. We also discuss important extensions of Rayleigh-BĂ©nard convection such as non-Oberbeck-Boussinesq effects and convection with phase changes

    Transmission of sound through a single vortex

    No full text
    We investigate experimentally the deformation of acoustic wavefronts after crossing of a single, isolated vortex in free space. The incident sound wavelength can be varied in a large domain. We study the wavefronts at variable distance after transmission through the vortex, when the wavelength and the vortex strength are varied. For small wavelength (λ≪a\lambda \ll a, the vortex core size) our results are in very good agreement with predictions and simulations based on geometrical acoustics principles. However, as the sound wavelength increases to value comparable with the vortex diameter, the deformation of the wavefronts show the development of scattering contributions, with characteristics in agreement with recent theoretical and numerical studies
    • …
    corecore