155 research outputs found

    Recommendations for exercise adherence measures in musculoskeletal settings : a systematic review and consensus meeting (protocol)

    Get PDF
    Background: Exercise programmes are frequently advocated for the management of musculoskeletal disorders; however, adherence is an important pre-requisite for their success. The assessment of exercise adherence requires the use of relevant and appropriate measures, but guidance for appropriate assessment does not exist. This research will identify and evaluate the quality and acceptability of all measures used to assess exercise adherence within a musculoskeletal setting, seeking to reach consensus for the most relevant and appropriate measures for application in research and/or clinical practice settings. Methods/design: There are two key stages to the proposed research. First, a systematic review of the quality and acceptability of measures used to assess exercise adherence in musculoskeletal disorders; second, a consensus meeting. The systematic review will be conducted in two phases and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to ensure a robust methodology. Phase one will identify all measures that have been used to assess exercise adherence in a musculoskeletal setting. Phase two will seek to identify published and unpublished evidence of the measurement and practical properties of identified measures. Study quality will be assessed against the COnsensus-based Standards for the selection of health Measurement Instruments (COSMIN) guidelines. A shortlist of best quality measures will be produced for consideration during stage two: a meeting of relevant stakeholders in the United Kingdom during which consensus on the most relevant and appropriate measures of exercise adherence for application in research and/or clinical practice settings will be sought. Discussion: This study will benefit clinicians who seek to evaluate patients’ levels of exercise adherence and those intending to undertake research, service evaluation, or audit relating to exercise adherence in the musculoskeletal field. The findings will impact upon new research studies which aim to understand the factors that predict adherence with exercise and which test different adherence-enhancing interventions. PROSPERO reference: CRD4201300621

    Negative Regulation of Interferon-β Gene Expression during Acute and Persistent Virus Infections

    Get PDF
    The production of type I interferons (IFNs) in response to viral infections is critical for antiviral immunity. However, IFN production is transient, and continued expression can lead to inflammatory or autoimmune diseases. Thus, understanding the mechanisms underlying the negative regulation of IFN expression could lead to the development of novel therapeutic approaches to the treatment of these diseases. We report that the transcription factor IRF3 plays a central role in the negative regulation of interferon-β (IFNβ) expression during both acute and persistent (chronic) virus infections. We show that the degradation of IRF3 during acute infections, rather than the activation of transcriptional repressors, leads to the down regulation of IFNβ expression. We also show that the block to IFNβ expression in mouse embryonic fibroblasts that are persistently infected with Sendai virus (SeV) correlates with the absence of transcriptionally active IRF3. Remarkably, ongoing protein synthesis and viral replication are required to maintain repression of the IFNβ gene in persistently infected cells, as the gene can be activated by the protein synthesis inhibitor cycloheximide, or by the antiviral drug ribavirin. Finally, we show that the SeV V protein inhibits IRF3 activity in persistently infected cells. Thus, in conjunction with the known interference with STAT1 by the SeV C protein, both IFN activation and its signaling pathways are blocked in persistently infected cells. We conclude that the transcription factor IRF3 is targeted for turnover and inactivation through distinct mechanisms from both the host cells and virus, leading to the inhibition of IFNβ gene expression during acute and persistent viral infections. These observations show that IRF3 plays a critical role, not only in the activation of the IFNβ gene, but also in the controlling the duration of its expression. (284 words

    Melanoma Differentiation-Associated Gene 5 (MDA5) Is Involved in the Innate Immune Response to Paramyxoviridae Infection In Vivo

    Get PDF
    The early host response to pathogens is mediated by several distinct pattern recognition receptors. Cytoplasmic RNA helicases including RIG-I and MDA5 have been shown to respond to viral RNA by inducing interferon (IFN) production. Previous in vitro studies have demonstrated a direct role for MDA5 in the response to members of the Picornaviridae, Flaviviridae and Caliciviridae virus families ((+) ssRNA viruses) but not to Paramyxoviridae or Orthomyxoviridae ((−) ssRNA viruses). Contrary to these findings, we now show that MDA5 responds critically to infections caused by Paramyxoviridae in vivo. Using an established model of natural Sendai virus (SeV) infection, we demonstrate that MDA5−/− mice exhibit increased morbidity and mortality as well as severe histopathological changes in the lower airways in response to SeV. Moreover, analysis of viral propagation in the lungs of MDA5−/− mice reveals enhanced replication and a distinct distribution involving the interstitium. Though the levels of antiviral cytokines were comparable early during SeV infection, type I, II, and III IFN mRNA expression profiles were significantly decreased in MDA5−/− mice by day 5 post infection. Taken together, these findings indicate that MDA5 is indispensable for sustained expression of IFN in response to paramyxovirus infection and provide the first evidence of MDA5-dependent containment of in vivo infections caused by (−) sense RNA viruses

    Responsiveness and minimal clinically important difference for pain and disability instruments in low back pain patients

    Get PDF
    BACKGROUND: The choice of an evaluative instrument has been hampered by the lack of head-to-head comparisons of responsiveness and the minimal clinically important difference (MCID) in subpopulations of low back pain (LBP). The objective of this study was to concurrently compare responsiveness and MCID for commonly used pain scales and functional instruments in four subpopulations of LBP patients. METHODS: The Danish versions of the Oswestry Disability Index (ODI), the 23-item Roland Morris Disability Questionnaire (RMQ), the physical function and bodily pain subscales of the SF36, the Low Back Pain Rating Scale (LBPRS) and a numerical rating scale for pain (0–10) were completed by 191 patients from the primary and secondary sectors of the Danish health care system. Clinical change was estimated using a 7-point transition question and a numeric rating scale for importance. Responsiveness was operationalised using standardardised response mean (SRM), area under the receiver operating characteristic curve (ROC), and cut-point analysis. Subpopulation analyses were carried out on primary and secondary sector patients with LBP only or leg pain +/- LBP. RESULTS: RMQ was the most responsive instrument in primary and secondary sector patients with LBP only (SRM = 0.5–1.4; ROC = 0.75–0.94) whereas ODI and RMQ showed almost similar responsiveness in primary and secondary sector patients with leg pain (ODI: SRM = 0.4–0.9; ROC = 0.76–0.89; RMQ: SRM = 0.3–0.9; ROC = 0.72–0.88). In improved patients, the RMQ was more responsive in primary and secondary sector patients and LBP only patients (SRM = 1.3–1.7) while the RMQ and ODI were equally responsive in leg pain patients (SRM = 1.3 and 1.2 respectively). All pain measures demonstrated almost equal responsiveness. The MCID increased with increasing baseline score in primary sector and LBP only patients but was only marginally affected by patient entry point and pain location. The MCID of the percentage change score remained constant for the ODI (51%) and RMQ (38%) specifically and differed in the subpopulations. CONCLUSION: RMQ is suitable for measuring change in LBP only patients and both ODI and RMQ are suitable for leg pain patients irrespectively of patient entry point. The MCID is baseline score dependent but only in certain subpopulations. Relative change measured using the ODI and RMQ was not affected by baseline score when patients quantified an important improvement

    Clinical chronobiology: a timely consideration in critical care medicine

    Get PDF
    A fundamental aspect of human physiology is its cyclical nature over a 24-h period, a feature conserved across most life on Earth. Organisms compartmentalise processes with respect to time in order to promote survival, in a manner that mirrors the rotation of the planet and accompanying diurnal cycles of light and darkness. The influence of circadian rhythms can no longer be overlooked in clinical settings; this review provides intensivists with an up-to-date understanding of the burgeoning field of chronobiology, and suggests ways to incorporate these concepts into daily practice to improve patient outcomes. We outline the function of molecular clocks in remote tissues, which adjust cellular and global physiological function according to the time of day, and the potential clinical advantages to keeping in time with them. We highlight the consequences of "chronopathology", when this harmony is lost, and the risk factors for this condition in critically ill patients. We introduce the concept of "chronofitness" as a new target in the treatment of critical illness: preserving the internal synchronisation of clocks in different tissues, as well as external synchronisation with the environment. We describe methods for monitoring circadian rhythms in a clinical setting, and how this technology may be used for identifying optimal time windows for interventions, or to alert the physician to a critical deterioration of circadian rhythmicity. We suggest a chronobiological approach to critical illness, involving multicomponent strategies to promote chronofitness (chronobundles), and further investment in the development of personalised, time-based treatment for critically ill patients

    Pelvic trauma : WSES classification and guidelines

    Get PDF
    Complex pelvic injuries are among the most dangerous and deadly trauma related lesions. Different classification systems exist, some are based on the mechanism of injury, some on anatomic patterns and some are focusing on the resulting instability requiring operative fixation. The optimal treatment strategy, however, should keep into consideration the hemodynamic status, the anatomic impairment of pelvic ring function and the associated injuries. The management of pelvic trauma patients aims definitively to restore the homeostasis and the normal physiopathology associated to the mechanical stability of the pelvic ring. Thus the management of pelvic trauma must be multidisciplinary and should be ultimately based on the physiology of the patient and the anatomy of the injury. This paper presents the World Society of Emergency Surgery (WSES) classification of pelvic trauma and the management Guidelines.Peer reviewe

    KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species

    Get PDF
    KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1−/− cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1−/− cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45α, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell capacity to scavenge intracellular ROS through an antioxidant pathway involving FoxO1 and SOD2, thus providing novel and useful insights into the understanding of KRIT1 molecular and cellular functions
    • …
    corecore