150 research outputs found
How the other half lives: CRISPR-Cas's influence on bacteriophages
CRISPR-Cas is a genetic adaptive immune system unique to prokaryotic cells
used to combat phage and plasmid threats. The host cell adapts by incorporating
DNA sequences from invading phages or plasmids into its CRISPR locus as
spacers. These spacers are expressed as mobile surveillance RNAs that direct
CRISPR-associated (Cas) proteins to protect against subsequent attack by the
same phages or plasmids. The threat from mobile genetic elements inevitably
shapes the CRISPR loci of archaea and bacteria, and simultaneously the
CRISPR-Cas immune system drives evolution of these invaders. Here we highlight
our recent work, as well as that of others, that seeks to understand phage
mechanisms of CRISPR-Cas evasion and conditions for population coexistence of
phages with CRISPR-protected prokaryotes.Comment: 24 pages, 8 figure
Chronic non-specific low back pain - sub-groups or a single mechanism?
Copyright 2008 Wand and O'Connell; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Low back pain is a substantial health problem and has subsequently attracted a
considerable amount of research. Clinical trials evaluating the efficacy of a variety of interventions
for chronic non-specific low back pain indicate limited effectiveness for most commonly applied
interventions and approaches.
Discussion: Many clinicians challenge the results of clinical trials as they feel that this lack of
effectiveness is at odds with their clinical experience of managing patients with back pain. A
common explanation for this discrepancy is the perceived heterogeneity of patients with chronic
non-specific low back pain. It is felt that the effects of treatment may be diluted by the application
of a single intervention to a complex, heterogeneous group with diverse treatment needs. This
argument presupposes that current treatment is effective when applied to the correct patient.
An alternative perspective is that the clinical trials are correct and current treatments have limited
efficacy. Preoccupation with sub-grouping may stifle engagement with this view and it is important
that the sub-grouping paradigm is closely examined. This paper argues that there are numerous
problems with the sub-grouping approach and that it may not be an important reason for the
disappointing results of clinical trials. We propose instead that current treatment may be ineffective
because it has been misdirected. Recent evidence that demonstrates changes within the brain in
chronic low back pain sufferers raises the possibility that persistent back pain may be a problem of
cortical reorganisation and degeneration. This perspective offers interesting insights into the
chronic low back pain experience and suggests alternative models of intervention.
Summary: The disappointing results of clinical research are commonly explained by the failure of
researchers to adequately attend to sub-grouping of the chronic non-specific low back pain
population. Alternatively, current approaches may be ineffective and clinicians and researchers may
need to radically rethink the nature of the problem and how it should best be managed
Cost-effectiveness of six strategies for Helicobacter pylori diagnosis and management in uninvestigated dyspepsia assuming a high resource intensity practice pattern
<p>Abstract</p> <p>Background</p> <p>Initial assessment of dyspepsia often includes noninvasive testing for <it>Helicobacter pylori </it>infection. Commercially available tests vary widely in cost and accuracy. Although there is extensive literature on the cost-effectiveness of <it>H. pylori </it>treatment, there is little information comparing the cost-effectiveness of various currently used, noninvasive testing strategies.</p> <p>Methods</p> <p>A Markov simulation was used to calculate cost per symptom-free year and cost per correct diagnosis. Uncertainty in outcomes was estimated using probabilistic sensitivity analysis.</p> <p>Results</p> <p>Under the baseline assumptions, cost per symptom-free year was 123 (stool antigen) to $129 (IgG/IgA combined serology). Confidence intervals had significant overlap.</p> <p>Conclusions</p> <p>Under our assumptions for how testing for <it>H. pylori </it>infection is employed in United States medical practice, the available noninvasive tests all have similar cost-effectiveness between one another as well as with empiric PPI trial.</p
GaAs-Based Superluminescent Light-Emitting Diodes with 290-nm Emission Bandwidth by Using Hybrid Quantum Well/Quantum Dot Structures
A high-performance superluminescent light-emitting diode (SLD) based upon a hybrid quantum well (QW)/quantum dot (QD) active element is reported and is assessed with regard to the resolution obtainable in an optical coherence tomography system. We report on the appearance of strong emission from higher order optical transition from the QW in a hybrid QW/QD structure. This additional emission broadening method contributes significantly to obtaining a 3-dB linewidth of 290 nm centered at 1200 nm, with 2.4 mW at room temperature
Identification of DNA-Damage DNA-Binding Protein 1 as a Conditional Essential Factor for Cytomegalovirus Replication in Interferon-γ-Stimulated Cells
The mouse cytomegaloviral (MCMV) protein pM27 represents an indispensable factor for viral fitness in vivo selectively, antagonizing signal transducer and activator of transcription 2 (STAT2)-mediated interferon signal transduction. We wished to explore by which molecular mechanism pM27 accomplishes this effect. We demonstrate that pM27 is essential and sufficient to curtail the protein half-life of STAT2 molecules. Pharmacologic inhibition of the proteasome restored STAT2 amounts, leading to poly-ubiquitin-conjugated STAT2 forms. PM27 was found in complexes with an essential host ubiquitin ligase complex adaptor protein, DNA-damage DNA-binding protein (DDB) 1. Truncation mutants of pM27 showed a strict correlation between DDB1 interaction and their ability to degrade STAT2. SiRNA-mediated knock-down of DDB1 restored STAT2 in the presence of pM27 and strongly impaired viral replication in interferon conditioned cells, thus phenocopying the growth attenuation of M27-deficient virus. In a constructive process, pM27 recruits DDB1 to exploit ubiquitin ligase complexes catalyzing the obstruction of the STAT2-dependent antiviral state of cells to permit viral replication
Goal formulation and tracking in child mental health settings: when is it more likely and is it associated with satisfaction with care?
Goal formulation and tracking may support preference-based care. Little is known about the likelihood of goal formulation and tracking and associations with care satisfaction. Logistic and Poisson stepwise regressions were performed on clinical data for N = 3757 children from 32 services in the UK (M age = 11; SDage = 3.75; most common clinician-reported presenting problem was emotional problems = 55.6%). Regarding the likelihood of goal formulation, it was more likely for pre-schoolers, those with learning difficulties or those with both hyperactivity disorder and conduct disorder. Regarding the association between goal formulation and tracking and satisfaction with care, parents of children with goals information were more likely to report complete satisfaction by scoring at the maximum of the scale. Findings of the present research suggest that goal formulation and tracking may be an important part of patient satisfaction with care. Clinicians should be encouraged to consider goal formulation and tracking when it is clinically meaningful as a means of promoting collaborative practice
Doxorubicin-induced chronic dilated cardiomyopathy—the apoptosis hypothesis revisited
The chemotherapeutic agent doxorubicin (DOX) has significantly increased survival rates of pediatric and adult cancer patients. However, 10% of pediatric cancer survivors will 10–20 years later develop severe dilated cardiomyopathy (DCM), whereby the exact molecular mechanisms of disease progression after this long latency time remain puzzling. We here revisit the hypothesis that elevated apoptosis signaling or its increased likelihood after DOX exposure can lead to an impairment of cardiac function and cause a cardiac dilation. Based on recent literature evidence, we first argue why a dilated phenotype can occur when little apoptosis is detected. We then review findings suggesting that mature cardiomyocytes are protected against DOX-induced apoptosis downstream, but not upstream of mitochondrial outer membrane permeabilisation (MOMP). This lack of MOMP induction is proposed to alter the metabolic phenotype, induce hypertrophic remodeling, and lead to functional cardiac impairment even in the absence of cardiomyocyte apoptosis. We discuss findings that DOX exposure can lead to increased sensitivity to further cardiomyocyte apoptosis, which may cause a gradual loss in cardiomyocytes over time and a compensatory hypertrophic remodeling after treatment, potentially explaining the long lag time in disease onset. We finally note similarities between DOX-exposed cardiomyocytes and apoptosis-primed cancer cells and propose computational system biology as a tool to predict patient individual DOX doses. In conclusion, combining recent findings in rodent hearts and cardiomyocytes exposed to DOX with insights from apoptosis signal transduction allowed us to obtain a molecularly deeper insight in this delayed and still enigmatic pathology of DC
Effect of spinal manipulation on sensorimotor functions in back pain patients: study protocol for a randomised controlled trial
<p>Abstract</p> <p>Background</p> <p>Low back pain (LBP) is a recognized public health problem, impacting up to 80% of US adults at some point in their lives. Patients with LBP are utilizing integrative health care such as spinal manipulation (SM). SM is the therapeutic application of a load to specific body tissues or structures and can be divided into two broad categories: SM with a high-velocity low-amplitude load, or an impulse "thrust", (HVLA-SM) and SM with a low-velocity variable-amplitude load (LVVA-SM). There is evidence that sensorimotor function in people with LBP is altered. This study evaluates the sensorimotor function in the lumbopelvic region, as measured by postural sway, response to sudden load and repositioning accuracy, following SM to the lumbar and pelvic region when compared to a sham treatment.</p> <p>Methods/Design</p> <p>A total of 219 participants with acute, subacute or chronic low back pain are being recruited from the Quad Cities area located in Iowa and Illinois. They are allocated through a minimization algorithm in a 1:1:1 ratio to receive either 13 HVLA-SM treatments over 6 weeks, 13 LVVA-SM treatments over 6 weeks or 2 weeks of a sham treatment followed by 4 weeks of full spine "doctor's choice" SM. Sensorimotor function tests are performed before and immediately after treatment at baseline, week 2 and week 6. Self-report outcome assessments are also collected. The primary aims of this study are to 1) determine immediate pre to post changes in sensorimotor function as measured by postural sway following delivery of a single HVLA-SM or LVVA-SM treatment when compared to a sham treatment and 2) to determine changes from baseline to 2 weeks (4 treatments) of HVLA-SM or LVVA-SM compared to a sham treatment. Secondary aims include changes in response to sudden loads and lumbar repositioning accuracy at these endpoints, estimating sensorimotor function in the SM groups after 6 weeks of treatment, and exploring if changes in sensorimotor function are associated with changes in self-report outcome assessments.</p> <p>Discussion</p> <p>This study may provide clues to the sensorimotor mechanisms that explain observed functional deficits associated with LBP, as well as the mechanism of action of SM.</p> <p>Trial registration</p> <p>This trial is registered in ClinicalTrials.gov, with the ID number of <a href="http://www.clinicaltrials.gov/ct2/show/NCT00830596">NCT00830596</a>, registered on January 27, 2009. The first participant was allocated on 30 January 2009 and the final participant was allocated on 17 March 2011.</p
- …