2,545 research outputs found
A Simple Suturing Technique for Laparoscopic Ligation of Vascular Pedicles
We report on the performance of 348 adnexectomies and 35 uterine artery ligations for both benign and malignant disease using a simple laparoscopic suturing technique. Only 5-mm ports are required, and there was no morbidity directly associated with this approach. The procedure can be performed quickly, is relatively inexpensive, and allows hysterectomy and oophorectomy to be performed without bipolar electrocautery
Airborne gravimetry: An investigation of filtering
Low-pass filtering in airborne gravimetry data processing plays a fundamental role in determining the spectral content and amplitude of the free-air anomaly. Traditional filters used in airborne gravimetry, the 6 × 20-s resistor-capacitor (RC) filter and the 300-s Gaussian filter, heavily attenuate the waveband of the gravity signal. As we strive to reduce the overall error budget to the sub-mGal level, an important step is to evaluate the choice and design of the low-pass filter employed in airborne gravimetry to optimize gravity anomaly recovery and noise attenuation. This study evaluates low-pass filtering options and presents a survey-specific frequency domain filter that employs the fast Fourier transform (FFT) for airborne gravity data. This study recommends a new approach to low-pass filtering airborne data. For a given survey, the filter is designed to maximize the target gravity signal based upon survey parameters and the character of measurement noise. This survey-specific low-pass filter approach is applied to two aerogravimetry surveys: one conducted in West Antarctica and the other in the eastern Pacific off the California coast. A reflight comparison with the West Antarctic survey shows that anomaly amplitudes are increased while slightly improving the rms fit between the reflown survey lines when an appropriately designed FFT filter is employed instead of the traditionally used filters. A comparison of the East Pacific survey with high-resolution shipboard gravity data indicates anomaly amplitude improvements of up to 20 mGal and a 49% improvement of the rms fit from 3.99 mGal to 2.04 mGal with the appropriately designed FFT filter. These results demonstrate that substantial improvement in anomaly amplitude and wavelength can be attained by tailoring the filter to the survey
Laparoscopic Sacral Colpopexy: A Proposed Technique
This case report describes a laparoscopic sacral colpopexy using Mersilene mesh in a patient with complete vaginal vault prolapse. Mersilene mesh was placed as a hammock between the vaginal apex and the anterior surface of the sacrum, using intracorporeal needles and an extracorporeal knot tying technique. Minor modifications are made from the traditional abdominal approach, because the patient had previously undergone a pelvic lymphadenectomy and vaginal cuff radiation for a stage IB grade 1 adenocarcinoma of the endometrium
Laparoscopic Surgical Staging of Stage I Primary Squamous Cell Carcinoma of the Vagina
Vaginal carcinoma is an uncommon malignancy and one of the few gynecologic malignancies that
is still clinically staged. Clinical staging, which can be difficult in some instances, is potentially inaccurate,
as it has been shown to be in early endometrial and ovarian carcinoma. In addition, clinical
staging can result in over- or undertreatment of the disease. The lack of standardization of treatment
further compounds the issue, particularly for patients with small-volume disease. We report three patients
with grade 2 or 3 small-volume primary squamous cell carcinoma of the vagina who underwent
pelvic lymph node sampling for staging purposes. Each patient had lesions small enough to be
considered for brachytherapy only. An average of 12 lymph nodes were removed with an average
operative time of 72 minutes. All procedures were performed on an outpatient basis, and there were
no intraoperative or postoperative complications. In one patient, teletherapy was added to the
brachytherapy because a microscopic focus of squamous cell carcinoma was discovered in an obturator
lymph node. Our initial experience indicates that laparoscopic sampling of lymph nodes in patients
with early vaginal carcinoma may be helpful in preventing undertreatment of these women.
Individualization of treatment can be accomplished quickly and safely on an outpatient basis, and
initiation of treatment is not delayed. We believe further evaluation of laparoscopic staging of primary
vaginal carcinoma is indicated
A Spin Modulated Telescope to Make Two Dimensional CMB Maps
We describe the HEMT Advanced Cosmic Microwave Explorer (HACME), a balloon
borne experiment designed to measure sub-degree scale Cosmic Microwave
Background anisotropy over hundreds of square degrees, using a unique two
dimensional scanning strategy. A spinning flat mirror that is canted relative
to its spin axis modulates the direction of beam response in a nearly
elliptical path on the sky. The experiment was successfully flown in February
of 1996, achieving near laboratory performance for several hours at float
altitude. A map free of instrumental systematic effects is produced for a 3.5
hour observation of 630 square degrees, resulting in a flat band power upper
limit of (l(l+1)C_l/2 pi)^0.5 < 77 microK at l = 38 (95% confidence). The
experiment design, flight operations and data, including atmospheric effects
and noise performance, are discussed.Comment: 4 pages, 3 figure
Modeling Macro-Sized, High Aspect Ratio Through-Hole Filling by Multi-Component Additive-Assisted Copper Electrodeposition
A multi-element, time-dependent model is used to examine additive-assisted copper electroplating in macro-channels. This model is an adaptation of the work of Akolkar and Landau [J. Electrochem. Soc., 156, D351 (2009)], used to describe plating in micro-vias for integrated circuits. Using their method for describing species movement in the channel, the model has been expanded to include transport and adsorption limitations of the inhibitor and accelerator, as well as the copper ions in solution. The model is used to investigate copper plating as an infiltration method across many size scales and aspect ratios. Biomorphic graphite scaffolds produced from wood are used as a representative system and the results of a two-additive bath are used to characterize the behavior of the additives and determine the effectiveness of the plating. The results indicate that at macro-scales, channel dimensions play an increasingly important role in dictating the behavior of additive-assisted plating. Because additive systems are designed to establish differential surface coverage within the channel, the success of which is determined by the additive's rates of diffusion and adsorption, certain size scale/aspect ratio combinations preclude such coverage. A guide for sample geometries that may be successfully infiltrated with a two-additive bath is provided
Recommended from our members
Airborne gravity and precise positioning for geologic applications
Airborne gravimetry has become an important geophysical tool primarily because of advancements in methodology and instrumentation made in the past decade. Airborne gravity is especially useful when measured in conjunction with other geophysical data, such as magnetics, radar, and laser altimetry. The aerogeophysical survey over the West Antarctic ice sheet described in this paper is one such interdisciplinary study. This paper outlines in detail the instrumentation, survey and data processing methodology employed to perform airborne gravimetry from the multiinstrumented Twin Otter aircraft. Precise positioning from carrier-phase Global Positioning System (GPS) observations are combined with measurements of acceleration made by the gravity meter in the aircraft to obtain the free-air gravity anomaly measurement at aircraft altitude. GPS data are processed using the Kinematic and Rapid Static (KARS) software program, and aircraft vertical acceleration and corrections for gravity data reduction are calculated from the GPS position solution. Accuracies for the free-air anomaly are determined from crossover analysis after significant editing (2.98 mGal rms) and from a repeat track (1.39 mGal rms). The aerogeophysical survey covered a 300,000 km2 region in West Antarctica over the course of five field seasons. The gravity data from the West Antarctic survey reveal the major geologic structures of the West Antarctic rift system, including the Whitmore Mountains, the Byrd Subglacial Basin, the Sinuous Ridge, the Ross Embayment, and Siple Dome. These measurements, in conjunction with magnetics and ice-penetrating radar, provide the information required to reveal the tectonic fabric and history of this important region
Applications of Two-Body Dirac Equations to the Meson Spectrum with Three versus Two Covariant Interactions, SU(3) Mixing, and Comparison to a Quasipotential Approach
In a previous paper Crater and Van Alstine applied the Two Body Dirac
equations of constraint dynamics to the meson quark-antiquark bound states
using a relativistic extention of the Adler-Piran potential and compared their
spectral results to those from other approaches, ones which also considered
meson spectroscopy as a whole and not in parts. In this paper we explore in
more detail the differences and similarities in an important subset of those
approaches, the quasipotential approach. In the earlier paper, the
transformation properties of the quark-antiquark potentials were limited to a
scalar and an electromagnetic-like four vector, with the former accounting for
the confining aspects of the overall potential, and the latter the short range
portion. A part of that work consisted of developing a way in which the static
Adler-Piran potential was apportioned between those two different types of
potentials in addition to covariantization. Here we make a change in this
apportionment that leads to a substantial improvement in the resultant
spectroscopy by including a time-like confining vector potential over and above
the scalar confining one and the electromagnetic-like vector potential. Our fit
includes 19 more mesons than the earlier results and we modify the scalar
portion of the potential in such a way that allows this formalism to account
for the isoscalar mesons {\eta} and {\eta}' not included in the previous work.
Continuing the comparisons made in the previous paper with other approaches to
meson spectroscopy we examine in this paper the quasipotential approach of
Ebert, Faustov, and Galkin for a comparison with our formalism and spectral
results.Comment: Revisions of earlier versio
- …