15 research outputs found

    Implementation of a Pressure Ulcer Prevention Protocol in the Perioperative Setting

    Get PDF
    Nursing Scholarship Symposium Event Posters.https://scholarlycommons.libraryinfo.bhs.org/nurs_presentations/1010/thumbnail.jp

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Réflexions sur le mouvement étudiant aux États-Unis

    No full text
    Birnbaum Norman, Childers Marjorie, Navelet Brigitte. Réflexions sur le mouvement étudiant aux États-Unis. In: L'Homme et la société, N. 16, 1970. Sociologie et contestation. pp. 55-69

    A hypothesis for robust polarization vision : an example from the Australian imperial blue butterfly, Jalmenus evagoras

    No full text
    The Australian lycaenid butterfly Jalmenus evagoras has iridescent wings that are sexually dimorphic, spectrally and in their degree of polarization, suggesting that these properties are likely to be important in mate recognition. We first describe the results of a field experiment showing that free-flying individuals of J. evagoras discriminate between visual stimuli that vary in polarization content in blue wavelengths but not in others. We then present detailed reflectance spectrophotometry measurements of the polarization content of male and female wings, showing that female wings exhibit blue-shifted reflectance, with a lower degree of polarization relative to male wings. Finally, we describe a novel method for measuring alignment of ommatidial arrays: by measuring variation of depolarized eyeshine intensity from patches of ommatidia as a function of eye rotation, we show that (a) individual rhabdoms contain mutually perpendicular microvilli; (b) many rhabdoms in the array have their microvilli misaligned with respect to neighboring rhabdoms by as much as 45 deg; and (c) the misaligned ommatidia are useful for robust polarization detection. By mapping the distribution of the ommatidial misalignments in eye patches of J. evagoras, we show that males and females exhibit differences in the extent to which ommatidia are aligned. Both the number of misaligned ommatidia suitable for robust polarization detection and the number of aligned ommatidia suitable for edge detection vary with respect to both sex and eye patch elevation. Thus, J. evagoras exhibits finely tuned ommatidial arrays suitable for perception of polarized signals, likely to match sex-specific life history differences in the utility of polarized signals

    The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies.

    Full text link
    Color vision has evolved multiple times in both vertebrates and invertebrates and is largely determined by the number and variation in spectral sensitivities of distinct opsin subclasses. However, because of the difficulty of expressing long-wavelength (LW) invertebrate opsins in vitro, our understanding of the molecular basis of functional shifts in opsin spectral sensitivities has been biased toward research primarily in vertebrates. This has restricted our ability to address whether invertebrate Gq protein-coupled opsins function in a novel or convergent way compared to vertebrate Gt opsins. Here we develop a robust heterologous expression system to purify invertebrate rhodopsins, identify specific amino acid changes responsible for adaptive spectral tuning, and pinpoint how molecular variation in invertebrate opsins underlie wavelength sensitivity shifts that enhance visual perception. By combining functional and optophysiological approaches, we disentangle the relative contributions of lateral filtering pigments from red-shifted LW and blue short-wavelength opsins expressed in distinct photoreceptor cells of individual ommatidia. We use in situ hybridization to visualize six ommatidial classes in the compound eye of a lycaenid butterfly with a four-opsin visual system. We show experimentally that certain key tuning residues underlying green spectral shifts in blue opsin paralogs have evolved repeatedly among short-wavelength opsin lineages. Taken together, our results demonstrate the interplay between regulatory and adaptive evolution at multiple Gq opsin loci, as well as how coordinated spectral shifts in LW and blue opsins can act together to enhance insect spectral sensitivity at blue and red wavelengths for visual performance adaptation

    Search for Scalar Diphoton Resonances in the Mass Range 6560065-600 GeV with the ATLAS Detector in pppp Collision Data at s\sqrt{s} = 8 TeVTeV

    No full text
    A search for scalar particles decaying via narrow resonances into two photons in the mass range 65–600 GeV is performed using 20.3fb120.3\text{}\text{}{\mathrm{fb}}^{-1} of s=8TeV\sqrt{s}=8\text{}\text{}\mathrm{TeV} pppp collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95% confidence level on the production cross section of a scalar boson times branching ratio into two photons, in a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches

    Search for Higgs and ZZ Boson Decays to J/ψγJ/\psi\gamma and Υ(nS)γ\Upsilon(nS)\gamma with the ATLAS Detector

    No full text
    A search for the decays of the Higgs and ZZ bosons to J/ψγJ/\psi\gamma and Υ(nS)γ\Upsilon(nS)\gamma (n=1,2,3n=1,2,3) is performed with pppp collision data samples corresponding to integrated luminosities of up to 20.3fb120.3\mathrm{fb}^{-1} collected at s=8TeV\sqrt{s}=8\mathrm{TeV} with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above expected backgrounds and 95% CL upper limits are placed on the branching fractions. In the J/ψγJ/\psi\gamma final state the limits are 1.5×1031.5\times10^{-3} and 2.6×1062.6\times10^{-6} for the Higgs and ZZ bosons, respectively, while in the Υ(1S,2S,3S)γ\Upsilon(1S,2S,3S)\,\gamma final states the limits are (1.3,1.9,1.3)×103(1.3,1.9,1.3)\times10^{-3} and (3.4,6.5,5.4)×106(3.4,6.5,5.4)\times10^{-6}, respectively
    corecore