18 research outputs found
4-Hydroxy-2-Nonenal-Modified Glyceraldehyde-3-Phosphate Dehydrogenase Is Degraded by Cathepsin G in Rat Neutrophils
Degradation of oxidized or oxidatively modified proteins is an essential part of the antioxidant defenses of cells. 4-Hydroxy-2-nonenal, a major reactive aldehyde formed by lipid peroxidation, causes many types of cellular damage. It has been reported that 4-hydroxy-2-nonenal-modified proteins are degraded by the ubiquitin-proteasome pathway or, in some cases, by the lysosomal pathway. However, our previous studies using U937 cells showed that 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase is degraded by cathepsin G. In the present study, we isolated the 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase-degrading enzyme from rat neutrophils to an active protein fraction of 28 kDa. Using the specific antibody, the 28 kDa protein was identified as cathepsin G. Moreover, the degradation activity was inhibited by cathepsin G inhibitors. These results suggest that cathepsin G plays a crucial role in the degradation of 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase
Localization and trafficking of aquaporin 2 in the kidney
Aquaporins (AQPs) are membrane proteins serving in the transfer of water and small solutes across cellular membranes. AQPs play a variety of roles in the body such as urine formation, prevention from dehydration in covering epithelia, water handling in the blood–brain barrier, secretion, conditioning of the sensory system, cell motility and metastasis, formation of cell junctions, and fat metabolism. The kidney plays a central role in water homeostasis in the body. At least seven isoforms, namely AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP11, are expressed. Among them, AQP2, the anti-diuretic hormone (ADH)-regulated water channel, plays a critical role in water reabsorption. AQP2 is expressed in principal cells of connecting tubules and collecting ducts, where it is stored in Rab11-positive storage vesicles in the basal state. Upon ADH stimulation, AQP2 is translocated to the apical plasma membrane, where it serves in the influx of water. The translocation process is regulated through the phosphorylation of AQP2 by protein kinase A. As soon as the stimulation is terminated, AQP2 is retrieved to early endosomes, and then transferred back to the Rab 11-positive storage compartment. Some AQP2 is secreted via multivesicular bodies into the urine as exosomes. Actin plays an important role in the intracellular trafficking of AQP2. Recent findings have shed light on the molecular basis that controls the trafficking of AQP2
Key Role of Chemical Hardness to Compare 2,2-Diphenyl-1-picrylhydrazyl Radical Scavenging Power of Flavone and Flavonol O-Glycoside and C-Glycoside Derivatives
The antioxidant activities of flavonoids and their glycosides were measured with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. The results show that free hydroxyl flavonoids are not necessarily more active than O-glycoside. Quercetin and kaempferol showed higher activity than apigenin. The C- and O-glycosides of flavonoids generally showed higher radical scavenging activity than aglyones; however, kampferol C3-O-glycoside (astragalin) showed higher activity than kaempferol. In the radical scavenging activity of flavonoids, it was expected that OH substitutions at C3 and C5 and catechol substitution at C2 of B ring and intramolecular hydrogen bonding between OH at C5 and ketone at C3 would increase the activity; however, the reasons have yet to be clarified. We here show that the radical scavenging activities of flavonoids are controlled by there absolute hardness and absolute electronegativity as an electron state must be small to increase the radical scavenging activity of flavonoids. The results show that chemically soft kaempferol and quercetin have higher DPPH radical scavenging activity than chemically hard genistein and daizein