99 research outputs found
Modification of Dentofacial Growth Associated with Goldenhar Syndrome
The rare developmental defect, Goldenhar syndrome is characterized by complex craniofacial and dentofacial anomalies. Here we describe the successful orthodontic treatment of a 5-year-old Japanese Goldenhar syndrome patient with mild facial asymmetry, right microtia, right-side hearing loss, and tongue-thrusting by a modification of dentofacial growth using a non-surgical orthopedic treatment approach. Improvement of the vertical discrepancies on the affected side and canted occlusal plane as well as mandibular deviation were achieved with a functional orthopaedic approach. Stable and acceptable occlusion were obtained over the 32-month post-retention period. A non-surgical orthodontic treatment approach offers satisfactory facial aesthetic outcomes in Goldenhar syndrome
Refractory Age-Related Macular Degeneration Due to Concurrent Central Serous Chorioretinopathy in Previously Well-Controlled Eyes
Background: During the treatment of age-related macular degeneration with anti-vascular endothelial growth factor (VEGF) drugs, we often see cases with anti-VEGF-resistant refractory subretinal fluid. In this report, we present two cases of anti-VEGF-resistant refractory age-related macular degeneration (AMD) due to the concurrent development of central serous chorioretinopathy (CSCR) in eyes previously well controlled with intravitreal anti-VEGF injections. Case presentation: Two patients underwent intravitreal aflibercept for the treatment of neovascular AMD. Initially, both patients responded well to intravitreal aflibercept, resulting in the complete resolution of the subretinal fluid. However, both patients subsequently developed sudden-onset refractory subretinal fluid that did not respond to repeated intravitreal aflibercept. Fluorescein angiography, indocyanine green angiography, and swept-source optical coherence tomography revealed focal leakage spots, choroidal hyperpermeability, and dilated choroidal vessels, respectively, which were distinct from the pre-existing choroidal neovascularization and suggestive of newly developed CSCR. Laser photocoagulation of the leak spots resulted in the complete resolution of the once-refractory subretinal fluid and the maintenance of vision. Conclusions: Our cases highlight that anti-VEGF-refractory subretinal fluid may occur secondary to concurrent CSCR in patients receiving regular anti-VEGF treatments for AMD. In those patients, treatment for CSCR is effective for controlling subretinal fluid that is unresolved by anti-VEGF treatment
Identification of a novel intronic enhancer responsible for the transcriptional regulation of musashi1 in neural stem/progenitor cells
<p>Abstract</p> <p>Background</p> <p>The specific genetic regulation of neural primordial cell determination is of great interest in stem cell biology. The Musashi1 (Msi1) protein, which belongs to an evolutionarily conserved family of RNA-binding proteins, is a marker for neural stem/progenitor cells (NS/PCs) in the embryonic and post-natal central nervous system (CNS). Msi1 regulates the translation of its downstream targets, including <it>m-Numb </it>and <it>p21 </it>mRNAs. <it>In vitro </it>experiments using knockout mice have shown that Msi1 and its isoform Musashi2 (Msi2) keep NS/PCs in an undifferentiated and proliferative state. Msi1 is expressed not only in NS/PCs, but also in other somatic stem cells and in tumours. Based on previous findings, Msi1 is likely to be a key regulator for maintaining the characteristics of self-renewing stem cells. However, the mechanisms regulating <it>Msi1 </it>expression are not yet clear.</p> <p>Results</p> <p>To identify the DNA region affecting <it>Msi1 </it>transcription, we inserted the fusion gene <it>ffLuc</it>, comprised of the fluorescent <it>Venus </it>protein and firefly <it>Luciferase</it>, at the translation initiation site of the mouse <it>Msi1 </it>gene locus contained in a 184-kb bacterial artificial chromosome (BAC). Fluorescence and Luciferase activity, reflecting the <it>Msi1 </it>transcriptional activity, were observed in a stable BAC-carrying embryonic stem cell line when it was induced toward neural lineage differentiation by retinoic acid treatment. When neuronal differentiation was induced in embryoid body (EB)-derived neurosphere cells, reporter signals were detected in Msi1-positive NSCs and GFAP-positive astrocytes, but not in MAP2-positive neurons. By introducing deletions into the BAC reporter gene and conducting further reporter experiments using a minimized enhancer region, we identified a region, "D5E2," that is responsible for <it>Msi1 </it>transcription in NS/PCs.</p> <p>Conclusions</p> <p>A regulatory element for <it>Msi1 </it>transcription in NS/PCs is located in the sixth intron of the <it>Msi1 </it>gene. The 595-bp D5E2 intronic enhancer can transactivate <it>Msi1 </it>gene expression with cell-type specificity markedly similar to the endogenous Msi1 expression patterns.</p
Expression and function of inducible co-stimulator in patients with systemic lupus erythematosus: possible involvement in excessive interferon-γ and anti-double-stranded DNA antibody production
Inducible co-stimulator (ICOS) is the third member of the CD28/cytotoxic T-lymphocyte associated antigen-4 family and is involved in the proliferation and activation of T cells. A detailed functional analysis of ICOS on peripheral blood T cells from patients with systemic lupus erythematosus (SLE) has not yet been reported. In the present study we developed a fully human anti-human ICOS mAb (JTA009) with high avidity and investigated the immunopathological roles of ICOS in SLE. JTA009 exhibited higher avidity for ICOS than a previously reported mAb, namely SA12. Using JTA009, ICOS was detected in a substantial proportion of unstimulated peripheral blood T cells from both normal control individuals and patients with SLE. In CD4(+)CD45RO(+ )T cells from peripheral blood, the percentage of ICOS(+ )cells and mean fluorescence intensity with JTA009 were significantly higher in active SLE than in inactive SLE or in normal control individuals. JTA009 co-stimulated peripheral blood T cells in the presence of suboptimal concentrations of anti-CD3 mAb. Median values of [(3)H]thymidine incorporation were higher in SLE T cells with ICOS co-stimulation than in normal T cells, and the difference between inactive SLE patients and normal control individuals achieved statistical significance. ICOS co-stimulation significantly increased the production of IFN-γ, IL-4 and IL-10 in both SLE and normal T cells. IFN-γ in the culture supernatants of both active and inactive SLE T cells with ICOS co-stimulation was significantly higher than in normal control T cells. Finally, SLE T cells with ICOS co-stimulation selectively and significantly enhanced the production of IgG anti-double-stranded DNA antibodies by autologous B cells. These findings suggest that ICOS is involved in abnormal T cell activation in SLE, and that blockade of the interaction between ICOS and its receptor may have therapeutic value in the treatment of this intractable disease
Bioluminescent system for dynamic imaging of cell and animal behavior
AbstractThe current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies
Mitochondrial DNA as a biomarker for acute central serous chorioretinopathy: A case-control study
The literature suggests that stress may play a pivotal role in the precipitation of acute central serous chorioretinopathy (CSC) because chorioretinal integrity can be affected by the psychosocial state of the patient, indicating the need for a biomarker. Not only physical stress but also psychological stress causes many types of physical disorders. However, little is known about the pathophysiology of stress-induced disease. The objective of this study was to investigate whether serum factors might be involved in the development of stress-induced ocular diseases. Methods: This observational case series included 33 eyes of 33 consecutive patients with treatment-naïve acute CSC. Fifty eyes of 50 age-matched healthy volunteers were included in this study as non-CSC controls. Serum samples were collected from all participants, and the levels of mitochondrial DNA (mtDNA) were measured by quantitative real-time (RT)-PCR. Serum levels of high-mobility group box (HMGB) 1 and 8-hydroxy-2′-deoxyguanosine (8-OHdG), biological markers of acute/chronic inflammation and oxidative stress, were also measured. The relationships between serum mtDNA, 8-OHdG, and HMGB1 concentrations were investigated by multivariate regression analysis, alongside an assessment of clinical data. Results: In the treatment-naïve acute CSC group, the serum mtDNA levels (36.5 ± 32.4 ng/mL) were significantly higher than the levels in the control group (7.4 ± 5.9 ng/mL; p < 0.001). Serum levels of 8-OHdG and HMGB1 in treatment-naïve acute CSC patients measured 0.12 ± 0.08 ng/mL and 18.1 ± 35.0 ng/mL, respectively, indicating that HMGB1 levels were elevated in CSC compared with the control group. Multivariable regression analysis demonstrated that increased serum mtDNA levels were significantly associated with the height of serous retinal detachment. Conclusion: We showed serum mtDNA and HMGB1 level elevation and its relation to the clinical activities of CSC, indicating that serum mtDNA and HMGB1 could serve as biomarkers for the acute phase of the disease. The use of these biomarkers makes it possible to predict disease onset and determine disease severity
Evaluation of the Total Design Method in a survey of Japanese dentists
BACKGROUND: This study assessed the application of the Total Design Method (TDM) in a mail survey of Japanese dentists. The TDM was chosen because survey response rates in Japan are unacceptably low and the TDM had previously been used in a general population survey. METHODS: Four hundred and seventy eight dentist members of the Okayama Medical and Dental Practitioner's Association were surveyed. The nine-page, 27-item questionnaire covered dentist job satisfaction, physical practice, and dentist and patient characteristics. Respondents to the first mailing or the one-week follow-up postcard were defined as early responders; others who responded were late responders. Responder bias was assessed by examining age, gender and training. RESULTS: The overall response rate was 46.7% (223/478). The response rates by follow-up mailing were, 18% after the first mailing, 35.4% after the follow-up postcard, 42.3% after the second mailing, and 46.7% after the third mailing. Respondents did not differ from non-respondents in age or gender, nor were there differences between early and late responders. CONCLUSION: The application of TDM in this survey of Japanese dentists produced lower rates of response than expected from previous Japanese and US studies
Diagnosis of choroidal disease with deep learning-based image enhancement and volumetric quantification of optical coherence tomography
Purpose: The purpose of this study was to quantify choroidal vessels (CVs) in pathological eyes in three dimensions (3D) using optical coherence tomography (OCT) and a deep-learning analysis.
Methods: A single-center retrospective study including 34 eyes of 34 patients (7 women and 27 men) with treatment-naïve central serous chorioretinopathy (CSC) and 33 eyes of 17 patients (7 women and 10 men) with Vogt-Koyanagi-Harada disease (VKH) or sympathetic ophthalmitis (SO) were imaged consecutively between October 2012 and May 2019 with a swept source OCT. Seventy-seven eyes of 39 age-matched volunteers (26 women and 13 men) with no sign of ocular pathology were imaged for comparison. Deep-learning-based image enhancement pipeline enabled CV segmentation and visualization in 3D, after which quantitative vessel volume maps were acquired to compare normal and diseased eyes and to track the clinical course of eyes in the disease group. Region-based vessel volumes and vessel indices were utilized for disease diagnosis.
Results: OCT-based CV volume maps disclose regional CV changes in patients with CSC, VKH, or SO. Three metrics, (i) choroidal volume, (ii) CV volume, and (iii) CV index, exhibit high sensitivity and specificity in discriminating pathological choroids from healthy ones.
Conclusions: The deep-learning analysis of OCT images described here provides a 3D visualization of the choroid, and allows quantification of features in the datasets to identify choroidal disease and distinguish between different diseases.
Translational Relevance: This novel analysis can be applied retrospectively to existing OCT datasets, and it represents a significant advance toward the automated diagnosis of choroidal pathologies based on observations and quantifications of the vasculature
A practical device for pinpoint delivery of molecules into multiple neurons in culture
We have developed a device for pinpoint delivery of chemicals, proteins, and nucleic acids into cultured cells. The principle underlying the technique is the flow of molecules from the culture medium into cells through a rupture in the plasma membrane made by a needle puncture. DNA transfection is achieved by stabbing the needle tip into the nucleus. The CellBee device can be attached to any inverted microscope, and molecular delivery can be coupled with conventional live cell imaging. Because the position of the needle relative to the targeted cultured cells is computer-controlled, efficient delivery of molecules such as rhodamine into as many as 100 HeLa cells can be completed in 10 min. Moreover, specific target cells within a single dish can be transfected with multiple DNA constructs by simple changes of culture medium containing different plasmids. In addition, the nano-sized needle tip enables gentle molecular delivery, minimizing cell damage. This method permits DNA transfection into specific hippocampal neurons without disturbing neuronal circuitry established in culture
- …