936 research outputs found

    Structure Factor and Electronic Structure of Compressed Liquid Rubidium

    Full text link
    We have applied the quantal hypernetted-chain equations in combination with the Rosenfeld bridge-functional to calculate the atomic and the electronic structure of compressed liquid-rubidium under high pressure (0.2, 2.5, 3.9, and 6.1 GPa); the calculated structure factors are in good agreement with experimental results measured by Tsuji et al. along the melting curve. We found that the Rb-pseudoatom remains under these high pressures almost unchanged with respect to the pseudoatom at room pressure; thus, the effective ion-ion interaction is practically the same for all pressure-values. We observe that all structure factors calculated for this pressure-variation coincide almost into a single curve if wavenumbers are scaled in units of the Wigner-Seitz radius aa although no corresponding scaling feature is observed in the effective ion-ion interaction.This scaling property of the structure factors signifies that the compression in liquid-rubidium is uniform with increasing pressure; in absolute Q-values this means that the first peak-position (Q1Q_1) of the structure factor increases proportionally to V1/3V^{-1/3} (VV being the specific volume per ion), as was experimentally observed by Tsuji et al.Comment: 18 pages, 11 figure

    Meixner polynomials of the second kind and quantum algebras representing su(1,1)

    Full text link
    We show how Viennot's combinatorial theory of orthogonal polynomials may be used to generalize some recent results of Sukumar and Hodges on the matrix entries in powers of certain operators in a representation of su(1,1). Our results link these calculations to finding the moments and inverse polynomial coefficients of certain Laguerre polynomials and Meixner polynomials of the second kind. As an immediate consequence of results by Koelink, Groenevelt and Van Der Jeugt, for the related operators, substitutions into essentially the same Laguerre polynomials and Meixner polynomials of the second kind may be used to express their eigenvectors. Our combinatorial approach explains and generalizes this "coincidence".Comment: several correction

    Nucleus-Electron Model for States Changing from a Liquid Metal to a Plasma and the Saha Equation

    Full text link
    We extend the quantal hypernetted-chain (QHNC) method, which has been proved to yield accurate results for liquid metals, to treat a partially ionized plasma. In a plasma, the electrons change from a quantum to a classical fluid gradually with increasing temperature; the QHNC method applied to the electron gas is in fact able to provide the electron-electron correlation at arbitrary temperature. As an illustrating example of this approach, we investigate how liquid rubidium becomes a plasma by increasing the temperature from 0 to 30 eV at a fixed normal ion-density 1.03×1022/cm31.03 \times 10^{22}/cm^3. The electron-ion radial distribution function (RDF) in liquid Rb has distinct inner-core and outer-core parts. Even at a temperature of 1 eV, this clear distinction remains as a characteristic of a liquid metal. At a temperature of 3 eV, this distinction disappears, and rubidium becomes a plasma with the ionization 1.21. The temperature variations of bound levels in each ion and the average ionization are calculated in Rb plasmas at the same time. Using the density-functional theory, we also derive the Saha equation applicable even to a high-density plasma at low temperatures. The QHNC method provides a procedure to solve this Saha equation with ease by using a recursive formula; the charge population of differently ionized species are obtained in Rb plasmas at several temperatures. In this way, it is shown that, with the atomic number as the only input, the QHNC method produces the average ionization, the electron-ion and ion-ion RDF's, and the charge population which are consistent with the atomic structure of each ion for a partially ionized plasma.Comment: 28 pages(TeX) and 11 figures (PS

    Polynomial solutions of nonlinear integral equations

    Full text link
    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of C. Bender and E. Ben-Naim. We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.Comment: 10 page

    Birth and death processes and quantum spin chains

    Full text link
    This papers underscores the intimate connection between the quantum walks generated by certain spin chain Hamiltonians and classical birth and death processes. It is observed that transition amplitudes between single excitation states of the spin chains have an expression in terms of orthogonal polynomials which is analogous to the Karlin-McGregor representation formula of the transition probability functions for classes of birth and death processes. As an application, we present a characterization of spin systems for which the probability to return to the point of origin at some time is 1 or almost 1.Comment: 14 page

    Cosine and Sine Operators Related with Orthogonal Polynomial Sets on the Intervall [-1,1]

    Full text link
    The quantization of phase is still an open problem. In the approach of Susskind and Glogower so called cosine and sine operators play a fundamental role. Their eigenstates in the Fock representation are related with the Chebyshev polynomials of the second kind. Here we introduce more general cosine and sine operators whose eigenfunctions in the Fock basis are related in a similar way with arbitrary orthogonal polynomial sets on the intervall [-1,1]. To each polynomial set defined in terms of a weight function there corresponds a pair of cosine and sine operators. Depending on the symmetry of the weight function we distinguish generalized or extended operators. Their eigenstates are used to define cosine and sine representations and probability distributions. We consider also the inverse arccosine and arcsine operators and use their eigenstates to define cosine-phase and sine-phase distributions, respectively. Specific, numerical and graphical results are given for the classical orthogonal polynomials and for particular Fock and coherent states.Comment: 1 tex-file (24 pages), 11 figure

    Laws relating runs, long runs, and steps in gambler's ruin, with persistence in two strata

    Full text link
    Define a certain gambler's ruin process \mathbf{X}_{j}, \mbox{ \ }j\ge 0, such that the increments εj:=XjXj1\varepsilon_{j}:=\mathbf{X}_{j}-\mathbf{X}_{j-1} take values ±1\pm1 and satisfy P(εj+1=1εj=1,Xj=k)=P(εj+1=1εj=1,Xj=k)=akP(\varepsilon_{j+1}=1|\varepsilon_{j}=1, |\mathbf{X}_{j}|=k)=P(\varepsilon_{j+1}=-1|\varepsilon_{j}=-1,|\mathbf{X}_{j}|=k)=a_k, all j1j\ge 1, where ak=aa_k=a if 0kf1 0\le k\le f-1, and ak=ba_k=b if fk<Nf\le k<N. Here 0<a,b<10<a, b <1 denote persistence parameters and f,NN f ,N\in \mathbb{N} with f<Nf<N. The process starts at X0=m(N,N)\mathbf{X}_0=m\in (-N,N) and terminates when Xj=N|\mathbf{X}_j|=N. Denote by RN{\cal R}'_N, UN{\cal U}'_N, and LN{\cal L}'_N, respectively, the numbers of runs, long runs, and steps in the meander portion of the gambler's ruin process. Define XN:=(LN1ab(1a)(1b)RN1(1a)(1b)UN)/NX_N:=\left ({\cal L}'_N-\frac{1-a-b}{(1-a)(1-b)}{\cal R}'_N-\frac{1}{(1-a)(1-b)}{\cal U}'_N\right )/N and let fηNf\sim\eta N for some 0<η<10<\eta <1. We show limNE{eitXN}=φ^(t)\lim_{N\to\infty} E\{e^{itX_N}\}=\hat{\varphi}(t) exists in an explicit form. We obtain a companion theorem for the last visit portion of the gambler's ruin.Comment: Presented at 8th International Conference on Lattice Path Combinatorics, Cal Poly Pomona, Aug., 2015. The 2nd version has been streamlined, with references added, including reference to a companion document with details of calculations via Mathematica. The 3rd version has 2 new figures and improved presentatio

    Exact limiting relation between the structure factors in neutron and x-ray scattering

    Full text link
    The ratio of the static matter structure factor measured in experiments on coherent X-ray scattering to the static structure factor measured in experiments on neutron scattering is considered. It is shown theoretically that this ratio in the long-wavelength limit is equal to the nucleus charge at arbitrary thermodynamic parameters of a pure substance (the system of nuclei and electrons, where interaction between particles is pure Coulomb) in a disordered equilibrium state. This result is the exact relation of the quantum statistical mechanics. The experimental verification of this relation can be done in the long wavelength X-ray and neutron experiments.Comment: 7 pages, no figure

    Some Orthogonal Polynomials Arising from Coherent States

    Full text link
    We explore in this paper some orthogonal polynomials which are naturally associated to certain families of coherent states, often referred to as nonlinear coherent states in the quantum optics literature. Some examples turn out to be known orthogonal polynomials but in many cases we encounter a general class of new orthogonal polynomials for which we establish several qualitative results.Comment: 21 page

    A Convergent Method for Calculating the Properties of Many Interacting Electrons

    Full text link
    A method is presented for calculating binding energies and other properties of extended interacting systems using the projected density of transitions (PDoT) which is the probability distribution for transitions of different energies induced by a given localized operator, the operator on which the transitions are projected. It is shown that the transition contributing to the PDoT at each energy is the one which disturbs the system least, and so, by projecting on appropriate operators, the binding energies of equilibrium electronic states and the energies of their elementary excitations can be calculated. The PDoT may be expanded as a continued fraction by the recursion method, and as in other cases the continued fraction converges exponentially with the number of arithmetic operations, independent of the size of the system, in contrast to other numerical methods for which the number of operations increases with system size to maintain a given accuracy. These properties are illustrated with a calculation of the binding energies and zone-boundary spin- wave energies for an infinite spin-1/2 Heisenberg chain, which is compared with analytic results for this system and extrapolations from finite rings of spins.Comment: 30 pages, 4 figures, corrected pd
    corecore