514 research outputs found

    Selective rendering for efficient ray traced stereoscopic images

    Get PDF
    Depth-related visual effects are a key feature of many virtual environments. In stereo-based systems, the depth effect can be produced by delivering frames of disparate image pairs, while in monocular environments, the viewer has to extract this depth information from a single image by examining details such as perspective and shadows. This paper investigates via a number of psychophysical experiments, whether we can reduce computational effort and still achieve perceptually high-quality rendering for stereo imagery. We examined selectively rendering the image pairs by exploiting the fusing capability and depth perception underlying human stereo vision. In ray-tracing-based global illumination systems, a higher image resolution introduces more computation to the rendering process since many more rays need to be traced. We first investigated whether we could utilise the human binocular fusing ability and significantly reduce the resolution of one of the image pairs and yet retain a high perceptual quality under stereo viewing condition. Secondly, we evaluated subjects' performance on a specific visual task that required accurate depth perception. We found that subjects required far fewer rendered depth cues in the stereo viewing environment to perform the task well. Avoiding rendering these detailed cues saved significant computational time. In fact it was possible to achieve a better task performance in the stereo viewing condition at a combined rendering time for the image pairs less than that required for the single monocular image. The outcome of this study suggests that we can produce more efficient stereo images for depth-related visual tasks by selective rendering and exploiting inherent features of human stereo vision

    Understanding Mobile Apps Continuance Usage Behavior and Habit: An Expectance-Confirmation Theory

    Get PDF
    With the growing development of information technology and the wireless telecommunication network nowadays, mobile devices have been expanding rapidly and have been emerging as important tools for consumers. Using m-services and applications (apps) on mobile devices becomes custom in people’s daily lives. This study proposes a theoretical model to explore the continued usage behavior for smartphone. The objective of this study is to explore how perceived usefulness, perceived enjoyment, and confirmation influencing satisfaction and habit of consumers, and in turn influencing continued usage behavior, as well as the moderating effect of three characteristics of m-commerce. The proposed model will empirically be tested using survey method and collecting data from smartphone users in longitudinal setting. The structural equation modeling technique will be used to evaluate the causal model and confirmatory factor analysis will be performed to examine the reliability and validity of the measurement model. The findings of this study are expected to illustrate how factors influence individuals to use m-services and mobile apps and become a habit, as well as how these habits influence continued smartphone usage

    Investigation of Hepatoprotective Activity of Induced Pluripotent Stem Cells in the Mouse Model of Liver Injury

    Get PDF
    To date liver transplantation is the only effective treatment for end-stage liver diseases. Considering the potential of pluripotency and differentiation into tridermal lineages, induced pluripotent stem cells (iPSCs) may serve as an alternative of cell-based therapy. Herein, we investigated the effect of iPSC transplantation on thioacetamide- (TAA-) induced acute/fulminant hepatic failure (AHF) in mice. Firstly, we demonstrated that iPSCs had the capacity to differentiate into hepatocyte-like cells (iPSC-Heps) that expressed various hepatic markers, including albumin, α-fetoprotein, and hepatocyte nuclear factor-3β, and exhibited biological functions. Intravenous transplantation of iPSCs effectively reduced the hepatic necrotic area, improved liver functions and motor activity, and rescued TAA-treated mice from lethal AHF. 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate cell labeling revealed that iPSCs potentially mobilized to the damaged liver area. Taken together, iPSCs can effectively rescue experimental AHF and represent a potentially favorable cell source of cell-based therapy

    Impaired dendritic cell maturation and IL-10 production following H. pylori stimulation in gastric cancer patients

    Get PDF
    The current study was to investigate the interaction between Helicobacter pylori and human dendritic cells (DCs). Whether impaired DC function can influence the outcome of H. pylori infections. Human monocyte-derived DCs (MDDCs) from five gastric cancer patients and nine healthy controls were stimulated with H. pylori. Maturation markers of MDDC were examined by flow cytometry. IL-10 and TNF-α released by MDDCs and IL-17 produced by T cells were measured by ELISA. Regulatory signaling pathways of IL-10 were examined by ELISA, western blotting, and chromatin immunoprecipitation assay. The results showed that as compared with healthy individuals, the maturation marker CD40 in MDDCs, IL-17A expression from T cells, and IL-10 expression from MDDCs were significantly lower in gastric cancer patients. Blocking DC-SIGN, TLR2, and TLR4 could reverse H. pylori-associated IL-10 production. Activation of the p38 MAPK and NF-kB signaling pathways concomitant with decreased tri-methylated H3K9 and increased acetylated H3 accounted for the effect of H. pylori on IL-10 expression. Furthermore, upregulated IL-10 expression was significantly suppressed in H. pylori-pulsed MDDCs by histone acetyltransferase and methyltransferase inhibitors. Taken together, impaired DC function contributes to the less effective innate and adaptive immune responses against H. pylori seen in gastric cancer patients. H. pylori can regulate IL-10 production through Toll-like and DC-SIGN receptors, activates p-p38 MAPK signaling and the transcription factors NF-kB, and modulates histone modification

    Bacteremic pneumonia caused by Nocardia veterana in an HIV-infected patient

    Get PDF
    SummaryDisseminated Nocardia veterana infection has rarely been reported. We describe the first reported case of N. veterana bacteremic pneumonia in an HIV-infected patient. The isolate was confirmed by 16S rRNA sequencing analysis. The patient initially responded well to trimethoprim–sulfamethoxazole treatment (minimum inhibitory concentration 0.25μg/ml), but died of ventilator-associated pneumonia

    Arsenic exposure and lung fibrotic changes-evidence from a longitudinal cohort study and experimental models

    Get PDF
    IntroductionArsenic (As) exposure is associated with lung toxicity and we aim to investigate the effects of arsenic exposure on lung fibrotic changes.MethodsParticipants (n= 976) enrolled via a general health survey underwent chest low-dose computed tomography (LDCT), spirometry forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and urinary arsenic examination during 2016 and 2018. Lung fibrotic changes from LDCT were defined. AsLtoL, low arsenic levels in both 2016 and 2018; AsLtoH, low arsenic in 2016 but high levels in 2018; AsHtoL, high arsenic in 2016 but low levels in 2018; AsHtoH, high arsenic levels in both 2016 and 2018. Mice exposed to 0. 0.2mg/L, 2 mg/L, 50 mg/L of sodium arsenite (NaAsO2) through drinking water for 12 weeks and 24 weeks were applied for histological analysis. Cultured lung epithelial cells were exposed to NaAsO2 and the mesenchymal changes were examined.ResultsAsHtoH increased the risk (OR= 1.65, 95% CI 1.10, 2.49) of Lung fibrotic positive to positive (reference: Lung fibrotic negative to negative) compared with AsLtoL. Moreover, the predicted mean of FVC and FEV1 in AsHtoH (−0.09 units, 95% CI: −0.27, −0.09; −0.09 units, 95% CI: −0.17, −0.01) and AsLtoH (−0.13 units, 95% CI: −0.30, −0.10; −0.13 units, 95% CI: −0.22, −0.04) was significantly lower than ASLtoL. Significant lung fibrotic changes including the increase of the alveolar septum thickness and collagen fiber deposition were observed upon 2 mg/L NaAsO2 treatment for 12 weeks, and the damage was dose- and time-dependent. In vitro, sodium arsenite treatment promotes the epithelial-mesenchymal transition (EMT)-like changes of the normal human bronchial epithelial cells, including upregulation of several fibrotic and mesenchymal markers (fibronectin, MMP-2, and Snail) and cell migration. Inhibition of reactive oxygen species (ROS) and MMP-2 impaired the arsenic-induced EMT changes. Administration of a flavonoid, apigenin, inhibited EMT in vitro and pulmonary damages in vivo with the reduction of mesenchymal markers.Discussionwe demonstrated that continued exposure to arsenic causes lung fibrosis in humans and mice. Targeting lung epithelial cells EMT is effective on the development of therapeutic strategy. Apigenin is effective in the inhibition of arsenic-induced pulmonary fibrosis and EMT
    corecore