5 research outputs found

    Influence of Ag, Au and Pd noble metals doping on structural, optical and antimicrobial properties of zinc oxide and titanium dioxide nanomaterials

    No full text
    Oxide materials (ZnO, TiO2) doped with noble metals were synthesized using the combustion technique. The results of the addition of Ag, Au, and Pd up to a concentration of 2 mol% on the structural, optical, morphological and antimicrobial properties was considered. X-ray diffraction experiments revealed that the crystal structure of the host materials remained unaltered despite doping with noble metals. From the scanning electron microscopy results, it was evident that the doped nanoparticles aggregated in clusters of different sizes in the host matrix. The plasmonic effect was also observed in the absorbance spectra of the different doped materials. The obtained materials have shown promising antimicrobial features. All ZnO materials exhibited a high antimicrobial activity, with very low minimum inhibitory concentration values, against the planktonic growth of all tested Gram-positive and Gram-negative bacterial strains. All doped materials exhibited very good anti-biofilm activity, the lowest minimal biofilm eradication concentration values being registered for ZnO doped with Au and Pd toward Escherichia coli and for ZnO doped with Ag against Candida albicans. These results indicate the potential that these materials have for antimicrobial applications in the fields of biomedicine and environmental protection

    Thioureides of 2-(phenoxymethyl)benzoic acid 4-R substituted: a novel class of anti-parasitic compounds

    No full text
    Fifty members of a novel class of antimicrobial compounds, 2-(4-R-phenoxymethyl)benzoic acid thioureides, were synthesized and characterized with respect to their activities against three parasites of human relevance, namely the protozoa Giardia lamblia and Toxoplasma gondii, and the larval (metacestode) stage of the tapeworm Echinococcus multilocularis. To determine the selective toxicity of these compounds, the human colon cancer cell line Caco2 and primary cultures of human foreskin fibroblasts (HFF) were also investigated. The new thioureides were obtained in a three-step-reaction process and subsequently characterized by their physical constants (melting point, solubility). The chemical structures were elucidated by (1)H NMR, (13)C NMR, IR spectral methods and elemental analysis. The analyses confirmed the final and intermediate compound structures and the synthesis. The compounds were then tested on the parasites in vitro. All thioureides, except two compounds with a nitro group, were totally ineffective against Giardia lamblia. 23 compounds inhibited the proliferation of T. gondii, three of them with an IC(50) of approximately 1 microM. The structural integrity of E. multilocularis metacestodes was affected by 22 compounds. In contrast, HFF were not susceptible to any of these thioureides, while Caco2 cells were affected by 17 compounds, two of them inhibiting proliferation with an IC(50) in the micromolar range. Thioureides may thus present a promising class of anti-infective agents

    First report of OXA-72 producing Acinetobacter baumannii in Romania

    No full text
    This is the first report of an OXA-72-producing Acinetobacter baumannii strain in Romania, isolated from chronic leg ulcer samples. Identification of the strain was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Presence of carbapenem resistance genes was investigated by PCR and sequencing. Our data support the spread of the blaOXA-72 gene in Eastern Europe
    corecore