352 research outputs found

    Adversarially Robust Submodular Maximization under Knapsack Constraints

    Full text link
    We propose the first adversarially robust algorithm for monotone submodular maximization under single and multiple knapsack constraints with scalable implementations in distributed and streaming settings. For a single knapsack constraint, our algorithm outputs a robust summary of almost optimal (up to polylogarithmic factors) size, from which a constant-factor approximation to the optimal solution can be constructed. For multiple knapsack constraints, our approximation is within a constant-factor of the best known non-robust solution. We evaluate the performance of our algorithms by comparison to natural robustifications of existing non-robust algorithms under two objectives: 1) dominating set for large social network graphs from Facebook and Twitter collected by the Stanford Network Analysis Project (SNAP), 2) movie recommendations on a dataset from MovieLens. Experimental results show that our algorithms give the best objective for a majority of the inputs and show strong performance even compared to offline algorithms that are given the set of removals in advance.Comment: To appear in KDD 201

    Quantitative assessment of female pattern hair loss

    Get PDF
    AbstractBackground/ObjectiveThe conventional approach to evaluate female pattern hair loss (FPHL) is to visually inspect and score images of balding area (BA). However, visual estimates vary widely among different physicians, and may hinder objective assessment of hair loss and subsequent treatment response. For this reason, we propose a quantitative method using a computer-aided imaging system to help physicians evaluate the severity of FPHL clinically.MethodsWe use a series of digital image processing techniques to measure the width of central balding area of FPHL. A total of 184 photos were collected form 33 Chinese women with FPHL (stages I-2 to II-2 on the Savin scale). Each photograph underwent standardized exposure correction. The balding areas were detected through this computer system and then transformed into an equivalent ellipse by principal component analysis. The width of ellipse [balding width (BW)] was measured. Spearman's rank correlation was used to detect the correlation between our measurements and clinical staging.ResultsExposure correction resulted in a 16.97% (|BWcorrected − BWoriginal|/BWcorrected) difference in BW.‏ The average BW was 54.98 mm in all patients, 25.79 mm in type I-2 patients, 37.41 mm in I-3, 54.08 mm in I-4, 72.10 mm in II-1, and 85.53 mm in II-2. The values of BW were correlated with Savin scale stages clinically (rBW = 0.967), which was significant statistically (p < 0.05).ConclusionA computer-aided imaging system could be a useful tool to assist physicians to evaluate the balding area more precisely for clinical staging in FPHL. The BW instead of the balding area is simple to use clinically to represent the severity of FPHL

    High-Frequency Sea Level Variations Observed by GPS Buoys Using Precise Point Positioning Technique

    Full text link
    In this study, sea level variation observed by a 1-Hz Global Positioning System (GPS) buoy system is verified by comparing with tide gauge records and is decomposed to reveal high-frequency signals that cannot be detected from 6-minute tide gauge records. Compared to tide gauges traditionally used to monitor sea level changes and affected by land motion, GPS buoys provide high-frequency geocentric measurements of sea level variations. Data from five GPS buoy campaigns near a tide gauge at Anping, Tainan, Taiwan, were processed using the Precise Point Positioning (PPP) technique with four different satellite orbit products from the International GNSS Service (IGS). The GPS buoy data were also processed by a differential GPS (DGPS) method that needs an additional GPS receiver as a reference station and the accuracy of the solution depends on the baseline length. The computation shows the average Root Mean Square Error (RMSE) difference of the GPS buoy using DGPS and tide gauge records is around 3 - 5 cm. When using the aforementioned IGS orbit products for the buoy derived by PPP, its average RMSE differences are 5 - 8 cm, 8 - 13 cm, decimeter level, and decimeter-meter level, respectively, so the accuracy of the solution derived by PPP highly depends on the accuracy of IGS orbit products. Therefore, the result indicates that the accuracy of a GPS buoy using PPP has the potential to measure the sea surface variations to several cm. Finally, high-frequency sea level signals with periods of a few seconds to a day can be successfully detected in GPS buoy observations using the Ensemble Empirical Mode Decomposition (EMD) method and are identified as waves, meteotsunamis, and tides

    Improvement in Device Performance and Reliability of Organic Light-Emitting Diodes through Deposition Rate Control

    Get PDF
    We demonstrated a fabrication technique to reduce the driving voltage, increase the current efficiency, and extend the operating lifetime of an organic light-emitting diode (OLED) by simply controlling the deposition rate of bis(10-hydroxybenzo[h]qinolinato) beryllium (Bebq 2 ) used as the emitting layer and the electron-transport layer. In our optimized device, 55 nm of Bebq 2 was first deposited at a faster deposition rate of 1.3 nm/s, followed by the deposition of a thin Bebq 2 (5 nm) layer at a slower rate of 0.03 nm/s. The Bebq 2 layer with the faster deposition rate exhibited higher photoluminescence efficiency and was suitable for use in light emission. The thin Bebq 2 layer with the slower deposition rate was used to modify the interface between the Bebq 2 and cathode and hence improve the injection efficiency and lower the driving voltage. The operating lifetime of such a two-step deposition OLED was 1.92 and 4.6 times longer than that of devices with a single deposition rate, that is, 1.3 and 0.03 nm/s cases, respectively
    corecore