3,348 research outputs found

    Bulk-boundary correspondence for three-dimensional symmetry-protected topological phases

    Full text link
    We derive a bulk-boundary correspondence for three-dimensional (3D) symmetry-protected topological (SPT) phases with unitary symmetries. The correspondence consists of three equations that relate bulk properties of these phases to properties of their gapped, symmetry-preserving surfaces. Both the bulk and surface data appearing in our correspondence are defined via a procedure in which we gauge the symmetries of the system of interest and then study the braiding statistics of excitations of the resulting gauge theory. The bulk data is defined in terms of the statistics of bulk excitations, while the surface data is defined in terms of the statistics of surface excitations. An appealing property of this data is that it is plausibly complete in the sense that the bulk data uniquely distinguishes each 3D SPT phase, while the surface data uniquely distinguishes each gapped, symmetric surface. Our correspondence applies to any 3D bosonic SPT phase with finite Abelian unitary symmetry group. It applies to any surface that (1) supports only Abelian anyons and (2) has the property that the anyons are not permuted by the symmetries.Comment: 31 pages, 14 figures, 1 tabl

    Development of sustainable esterification reactions and the transformation of carbohydrates into applicable building blocks

    Get PDF
    This thesis showcases some developments in chemical processes and synthesis leading to products of commercial interest. The thesis includes studies on esterification reactions to improve the catalysis of these reactions. In addition, deoxydehydration (DODH) reactions of alkyl glycosides are studied and illustrated. DODH reactions were performed to convert alkyl glycosides into diols, by eliminating a cis-diol moiety in pyranosides to result in alkenes and alkanes. Furthermore, this thesis presents the transformation of some common alkyl glycosides into their rare counterparts (C3-epimers) by sequential C3-oxidation and heterogeneous hydrogenation. Finally, the development of novel fructose-based surfactants from fructose and its derived saccharides is studied and discussed

    Zero bias conductance peak in Majorana wires made of semiconductor-superconductor hybrid structures

    Full text link
    Motivated by a recent experimental report[1] claiming the likely observation of the Majorana mode in a semiconductor-superconductor hybrid structure[2,3,4,5], we study theoretically the dependence of the zero bias conductance peak associated with the zero-energy Majorana mode in the topological superconducting phase as a function of temperature, tunnel barrier potential, and a magnetic field tilted from the direction of the wire for realistic wires of finite lengths. We find that higher temperatures and tunnel barriers as well as a large magnetic field in the direction transverse to the wire length could very strongly suppress the zero-bias conductance peak as observed in Ref.[1]. We also show that a strong magnetic field along the wire could eventually lead to the splitting of the zero bias peak into a doublet with the doublet energy splitting oscillating as a function of increasing magnetic field. Our results based on the standard theory of topological superconductivity in a semiconductor hybrid structure in the presence of proximity-induced superconductivity, spin-orbit coupling, and Zeeman splitting show that the recently reported experimental data are generally consistent with the existing theory that led to the predictions for the existence of the Majorana modes in the semiconductor hybrid structures in spite of some apparent anomalies in the experimental observations at first sight. We also make several concrete new predictions for future observations regarding Majorana splitting in finite wires used in the experiments.Comment: 5 pages, 6 figures: revised submitted versio

    Systematic {\em ab initio} study of the phase diagram of epitaxially strained SrTiO3_3

    Full text link
    We use density-functional theory with the local-density approximation to study the structural and ferroelectric properties of SrTiO3_3 under misfit strains. Both the antiferrodistortive (AFD) and ferroelectric (FE) instabilities are considered. The rotation of the oxygen octahedra and the movement of the atoms are fully relaxed within the constraint of a fixed in-plane lattice constant. We find a rich misfit strain-induced phase transition sequence and is obtained only when the AFD distortion is taken into account. We also find that compressive misfit strains induce ferroelectricity in the tetragonal low temperature phase only whilst tensile strains induce ferroelectricity in the orthorhombic phases only. The calculated FE polarization for both the tetragonal and orthorhombic phases increases monotonically with the magnitude of the strains. The AFD rotation angle of the oxygen octahedra in the tetragonal phase increases dramatically as the misfit strain goes from the tensile to compressive strain region whilst it decreases slightly in the orthorhombic (FO4) phase. This reveals why the polarization in the epitaxially strained SrTiO3_3 would be larger when the tensile strain is applied, since the AFD distortion is found to reduce the FE instability and even to completely suppress it in the small strain region. Finally, our analysis of the average polar distortion and the charge density distribution suggests that both the Ti-O and Sr-O layers contribute significantly to the FE polarization
    • …
    corecore