279 research outputs found

    The Effect of Mobile Gamification on Brand Loyalty

    Get PDF
    The purpose of this study is mainly to use the gamification concept to design a mobile gaming app (application) for contextual marketing, and we will integrate digital game design technologies, such as augmented reality (AR) and global positioning system (GPS). The study will then look at associated consumer value and brand loyalty created by the users after experiencing the mobile game. Accordingly, we define the eight elements of a mobile gamification design, including coping-escape, fantasy, recreation, social, omnipotence, competition, skill development, and location-based. This research model treats “location-based” as a formative second-order construct driven by ubiquitous connectivity and contextual offer. Consumer value and brand loyalty are also a second-order construct. The study will conduct a quasi-experimental research to verify our model. It is hoped that service managers can benefit from the insights discovered from this study and implement more effective management strategies for effective performance

    Novel polythiophene derivatives functionalized withconjugated side-chain pendants comprisingtriphenylamine/carbazole moieties for photovoltaic cellapplications†

    Get PDF
    We synthesized a series of polythiophenes (PTs) featuring 2-ethylhexyl-substituted terthiophene (T) orquaterthiophene (BT) as the conjugated unit in the polymer backbone with pendant conjugated tertbutyl-substituted triphenylamine (tTPA)- or carbazole (tCz)-containing moieties as side chains, namelyPTtTPA, PBTtTPA, PTtCz and PBTtCz. Incorporating T and BT moieties into the polymer backbone andattaching tTPA or tCz units promoted efficient conjugation within the extended conjugated frameworksof the polymers, resulting in lower band-gap energies and red-shifting of the maximal UV-Visabsorption wavelength. The higher electron-donating ability of tTPA resulted in broader absorptionbands and lower band-gap energies of PTtTPA and PBTtTPA as compared with PTtCz and PBTtCz.Incorporation of the T and BT moieties into the polymer backbone enhanced the compatibility of PTand the fullerene derivative by reducing the side-chain density of PT, thus providing sufficient freevolume for efficient incorporation of [6,6]phenyl-C61-butyric acid methyl ester (PC61BM) into thepolymer chains. Polymer solar cells (PSCs) were fabricated by spin-coating a blend of each PT with thefullerene derivative (PC61BM) as a composite film-type photoactive layer; PBTtTPA/PC61BM-based PSCsshowed superior photovoltaic (PV) performance to PTtTPA/PC61BM-based PSCs in terms of conjugationand absorption band broadness. However, PBTtCz/PC61BM-based PSCs showed inferior PV performanceto PTtCz/PC61BM-based PSCs. The lower HOMO level led to a higher open-circuit voltage (Voc; 0.74 V)and larger photo-energy conversion efficiency (h; 2.77%) of PTtCz/PC61BM-based PSCs

    Recent Development of Graphene-Based Cathode Materials for Dye-Sensitized Solar Cells

    Get PDF
    Dye-sensitized solar cells (DSSCs) have attracted extensive attention for serving as potential low-cost alternatives to silicon-based solar cells. As a vital role of a typical DSSC, the counter electrode (CE) is generally employed to collect electrons via the external circuit and speed up the reduction reaction of I3- to I- in the redox electrolyte. The noble Pt is usually deposited on a conductive glass substrate as CE material due to its excellent electrical conductivity, electrocatalytic activity, and electrochemical stability. To achieve cost-efficient DSSCs, reasonable efforts have been made to explore Pt-free alternatives. Recently, the graphene-based CEs have been intensively investigated to replace the high-cost noble Pt CE. In this paper, we provided an overview of studies on the electrochemical and photovoltaic characteristics of graphene-based CEs, including graphene, graphene/Pt, graphene/carbon materials, graphene/conducting polymers, and graphene/inorganic compounds. We also summarize the design and advantages of each graphene-based material and provide the possible directions for designing new graphene-based catalysts in future research for high-performance and low-cost DSSCs

    Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-matter Interactions

    Full text link
    Van der Waals (vdW) solids, as a new type of artificial materials that consist of alternating layers bonded by weak interactions, have shed light on fascinating optoelectronic device concepts. As a result, a large variety of vdW devices have been engineered via layer-by-layer stacking of two-dimensional materials, although shadowed by the difficulties of fabrication. Alternatively, direct growth of vdW solids has proven as a scalable and swift way, highlighted by the successful synthesis of graphene/h-BN and transition metal dichalcogenides (TMDs) vertical heterostructures from controlled vapor deposition. Here, we realize high-quality organic and inorganic vdW solids, using methylammonium lead halide (CH3NH3PbI3) as the organic part (organic perovskite) and 2D inorganic monolayers as counterparts. By stacking on various 2D monolayers, the vdW solids behave dramatically different in light emission. Our studies demonstrate that h-BN monolayer is a great complement to organic perovskite for preserving its original optical properties. As a result, organic/h-BN vdW solid arrays are patterned for red light emitting. This work paves the way for designing unprecedented vdW solids with great potential for a wide spectrum of applications in optoelectronics

    Low neutrophil-to-lymphocyte ratio predicts overall survival benefit in advanced NSCLC patients with low PD-L1 expression and receiving chemoimmunotherapy

    Get PDF
    Although combination therapy including chemotherapy and immune checkpoint inhibitors (ICIs) improves overall survival (OS) of patients with non-small-cell lung cancer (NSCLC), there is a higher incidence of adverse events and treatment discontinuation. Since programmed death-ligand 1 (PD-L1) could not serve as a predictive biomarker, we investigated the neutrophil-to-lymphocyte ratio (NLR) as a predictive biomarker. In our previous research, we demonstrated that a low NLR could predict survival benefits when patients with high PD-L1 expression (> 50%) received chemoimmunotherapy as opposed to immunotherapy alone. In this current study, our objective is to evaluate this predictive capacity in patients with low PD-L1 expression (< 50%). A total of 142 patients were enrolled, 28 receiving combination therapy and 114 receiving chemotherapy alone. Progression-free survival (PFS) and OS were estimated using the Kaplan-Meier method and compared using the log-rank test. Patients who received combination therapy had significantly better PFS and OS than those who received monotherapy. In the subgroup of patients with low NLR, those who received combination therapy exhibited extended PFS and OS with clinical significance, which was also confirmed by multivariate Cox regression analysis. Our study demonstrates the potential use of NLR as a biomarker for predicting survival benefits when receiving combination therapy with chemotherapy and ICIs in patients with advanced NSCLC and low PD-L1 expression

    Clinical Study of Uric Acid Urolithiasis

    Get PDF
    Uric acid urolithiasis develops from various causes. To investigate the clinical and biochemical presentation of patients with uric acid urolithiasis, a retrospective study was designed. A total of 46 cases were enrolled between January 2004 and December 2005. The compositions of the stones were analyzed by infrared spectrophotometry. There were 39 males (84.8%) and seven females (15.2%), with a mean age of 61.5 ± 10.6 years and mean body mass index (BMI) of 26.7 ± 3.1 kg/m2. The stone location was kidney in 10 (21.7%), ureter in 22 (41.8%), and bladder in 14 (30.5%). Multiple stones were diagnosed in 36 patients (78.3%). Pre-existing comorbidities included diabetes mellitus in 11 patients (23.9%), hypertension in 23 (50%), gout in 13 (28.2%), and benign prostatic hyperplasia in 14 (30.4%). Mean serum creatinine and uric acid was 1.6 ± 0.6 mg/dL and 7.6 ± 1.8 mg/dL, respectively. There were 27 patients (58%) with creatinine > 1.4 mg/dL. The mean urinary pH was 5.42 ± 0.46. Patients with uric acid urolithiasis were predominantly male, older, with higher BMI, multiple stone presentation, with lower urinary pH, and hyperuricemia. Exacerbation of the renal function should also be of concern because of the high proportion of patients with renal insufficiency diagnosed in this study

    Rapid Trio Exome Sequencing for Autosomal Recessive Renal Tubular Dysgenesis in Recurrent Oligohydramnios

    Get PDF
    Oligohydramnios is not a rare prenatal finding. However, recurrent oligohydramnios is uncommon, and genetic etiology should be taken into consideration. We present two families with recurrent fetal oligohydramnios that did not respond to amnioinfusion. Rapid trio-whole-exome sequencing (WES) revealed mutations in the AGT gene in both families within 1 week. The first family had a compound heterozygous mutation with c.856 + 1G > T and c.857-619_1269 + 243delinsTTGCCTTGC changes. The second family had homozygous c.857-619_1269 + 243delinsTTGCCTTGC mutations. AGT gene mutation may lead to autosomal recessive renal tubular dysgenesis, a rare and lethal disorder that can result in early neonatal death. Both the alleles identified are known alleles associated with pathogenicity. Our findings suggest that trio-WES analysis may help rapidly identify causative etiologies that can inform prompt counseling and decision-making prenatally
    • …
    corecore