4 research outputs found

    Enhancing Food Grains Storage Systems through Insect Pest Detection and Control Measures for Maize and Beans: Ensuring Food Security Post-COVID-19 Tanzania

    Get PDF
    This research article was published by MDPI, 2024COVID-19 poses a significant threat to the present and future of mankind. The emergence of diverse strains during the pandemic creates uncertainty regarding their disappearance or resurgence. Lockdown measures and travel restrictions impact national and household food systems, hindering the movement of people and goods. Effective COVID-19 control requires science-based preventive measures and consideration of food availability. In Tanzania, resource-constrained farmers rely on the self-storage of food crops. Precise pest control information and tailored detection/storage systems are essential for preserving major staple foods such as maize and beans, which face frequent infestation by beetles and moths. Traditional methods used before the pandemic are insufficient compared to advanced global alternatives. This paper reviewed about 175 publications from different databases, dated from 1984 to 2023 (2023 to 2014 = 134, 2013 to 2004 = 26 and 2003 to 1984 = 15), assessing storage management for maize and beans. Identifying gaps between Tanzania and global advancements aiming to empower farming communities with the latest technologies and ensuring food security amid the pandemic

    Tomato Leafminer (Tuta absoluta Meyrick 1917): A Threat to Tomato Production in Africa

    Get PDF
    This research article published by Journal of Agriculture and Ecology Research International, Vol.: 10, Issue.: 1, 2016Tomato (Solanum lycopersicum L.) is an important vegetable crop for income, food and nutrition in Africa. Production of the crop is currently threatened by leaf miner [Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)]. Heavy infestation by T. absoluta has been reported to cause yield losses ranging from 80-100%. Tuta absoluta has high rate of reproduction and short life cycle making it very dominant in the infested tomato fields. Insecticide application for control of the pest is uneconomical for subsistence farming and beyond the earnings of majority of resource-poor farmers in Africa. Use of host resistance and or integrated pest management (IPM) strategies is slightly or not in use thus making the pest reign in the majority of African countries. This review discusses how T. absoluta threatens production and recommends some focal areas towards addressing this pest problem in the tomato industry in Africa

    Characterization of hymenopteran parasitoids of aphis fabae in an African smallholder bean farming system through sequencing of COI 'mini-barcodes'

    Get PDF
    Parasitoids are among the most frequently reported natural enemies of insect pests, particularly aphids. The efficacy of parasitoids as biocontrol agents is influenced by biotic and abiotic factors. For example, hyperparasitoids can reduce the abundance of the primary parasitoids as well as modify their behavior. A field study was conducted at three contrasting elevations on Mount Kilimanjaro, Tanzania, to identify the parasitoids of aphids in smallholder bean farming agroecosystems. Sentinel aphids (Aphis fabae) on potted bean plants (Phaseolus vulgaris) were exposed in 15 bean fields at three elevations for 2 days. The sentinel aphids were then kept in cages in a greenhouse until emergence of the parasitoids, which were collected and preserved in 98% ethanol for identification. Of the 214 parasitoids that emerged from sentinel aphids, the greatest abundance (44.86%) were from those placed at intermediate elevations (1000–1500 m a.s.l), compared to 42.52% from the lowest elevations and only 12.62% from the highest elevation farms. Morphological identification of the parasitoids that emerged from parasitized aphids showed that 90% were Aphidius species (Hymenoptera: Braconidae: Aphidiinae). Further characterization by sequencing DNA ‘mini-barcodes’ identified parasitoids with ≥99% sequence similarity to Aphidius colemani, 94–95% sequence similarity to Pachyneuron aphidis and 90% similarity to a Charipinae sp. in the National Center for Biotechnology Information (NCBI) database. These results confidently identified A. colemani as the dominant primary aphid parasitoid of A. fabae in the study area. A Pachyneuron sp., which was most closely related to P. aphidis, and a Charipinae sp. occurred as hyperparasitoids. Thus, interventions to improve landscapes and farming practice should monitor specifically how to augment populations of A. colemani, to ensure any changes enhance the delivery of natural pest regulation. Further studies are needed for continuous monitoring of the hyperparasitism levels and the dynamics of aphids, primary parasitoids, and secondary parasitoids in different cropping seasons and their implications in aphid control

    The South America tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), spreads its wings in Eastern Africa: distribution and socioeconomic impacts

    No full text
    Following the arrival of Tuta absoluta Meyrick in the eastern African subregion in 2012, several studies have shown numerous ecological aspects of its invasion. We investigated the impact of T. absoluta on people's livelihoods across four counties of Kenya. Here, 200 farmers in the country were interviewed in person using semistructured questionnaires. In addition to livelihood surveys, T. absoluta distribution was mapped between 2016 and 2018 to determine its current distribution across four countries (Kenya, Sudan, Tanzania, and Uganda) in the subregion. Albeit a recent invader, T. absoluta is abundant and distributed throughout the subregion and is viewed as the worst invasive alien species of agriculturally sustainable livelihoods by tomato farmers. The arrival of T. absoluta in the subregion has resulted in livelihood losses and increased both the cost of tomato production and frequency of pesticide application. We recommend the implementation of biological control along, with other control measures in an integrated approach, against T. absoluta in the subregion, where its impact on sustainable livelihoods is serious and long-term control strategies are required to curb its detrimental effects
    corecore