30 research outputs found

    Anti-inflammatory activity of Vitex negundo, Boswellia serrata and Aegle marmelos leaf extracts in LPS treated A549 cells

    Get PDF
    The present study aims to evaluate the therapeutic properties of the medicinal plants (Vitex negundo, Aegle marmelos and Boswellia serrata) for their potential anti-inflammatory activity in LPS treated human lung adenocarcinoma A549 cells. A549 cells were treated with or without LPS and methanolic leaf extracts of the above medicinal plants and the cell viability and nitric oxide production was measured by MTT assay and Griess reaction respectively. Expression of pro-inflammatory cytokines mRNAs (IL-8 and TNF-α) was measured by semi-quantitative RT-PCR. The methanolic leaf extracts of all the 3 plants significantly decreased the LPS induced NO production and pro-inflammatory cytokines expression. Out of the 3 plants tested, Vitex negundo and Aegle marmelos leaf extracts at 50 and 100µg/ml show potent anti-inflammatory activity. The novel pharmacological action provide new avenue for the isolation and purification of phytochemicals from Vitex negundo and Aegle marmelos that may be of therapeutic modality for the treatment of inflammation.</p

    Effect of Simulated Microgravity on the Activity of Regulatory Enzymes of Glycolysis and Gluconeogenesis in Mice Liver

    Get PDF
    Gravity supports all the life activities present on earth. Microgravity environments have effect on the biological functions and physiological status of an individual. The present study was undertaken to investigate the effect of simulated microgravity on important regulatory enzymes of carbohydrate metabolism in liver using HLS mice model. Following hind limb unloading of mice for 11 days the animal’s average body weights were found to be not different, while the liver weights were decreased and found to be significantly different (p < 0.05) from control mice. Further, in liver the specific activity of hexokinase enzyme was reduced (p < 0.02) and the phosphoenolpyruvate carboxykinase activity was significantly increased in simulated microgravity subjected mice compared to control (p < 0.003). Immunoblot analysis show decreased phosphofructokinase-2 activity in HLS mice compared to control. Liver lactate dehydrogenase activity significantly reduced in simulated microgravity subjected mice (p < 0.005). Thus in our study the rodents have adapted to simulated microgravity conditions, with decreased glycolysis and increased gluconeogenesis in liver and reciprocally regulated

    Stress Activated P38 Mapk Regulates Cell Cycle via AP-1 Factors in Areca Extract Exposed Human Lung Epithelial Cells

    Get PDF
    Areca nut chewing habits are associated with several oral manifestations like leukoplakia, submucous fibrosis and oral squamous cell carcinoma. Although numerous evidence on areca toxicity is known but the mechanistic pathway of disease causation is to be studied. Aqueous areca nut extract treated A549 cells showed reduced cell viability by 48 h with IC50 value of 0.50%. The toxic nature of areca nut induced the production of reactive oxygen species with decreased anti-oxidant glutathione S transferase levels lead to altered redox homeostasis. PCR studies showed decreased mRNA levels of Jun and Fos AP-1 subunits on extract treatment by 48 h. The protein levels of PCNA, CDK4, RB, p53, c-Jun and c-Fos were found to be downregulated with upregulated CDK inhibitor p21 on extract treatment as compared to control. Results of FACS analysis further confirm G1/S phase cell cycle arrest on areca nut extract exposure. The regulation of downstream AP-1 subunits by MAPKs was studied by using specific inhibitors of ERK, JNK and p38 along with areca nut extract. Results showed the redox activation of MAP kinases down regulated the mRNA levels of AP-1 subunits in aqueous areca nut extract treated cells. Hence the present study aids in elucidating the role of MAP kinases in regulating the AP-1 subunits and their implications on target genes that are involved regulation of various cellular processes. Further, it would help in understanding the mechanistic aspects of the diseased state which may facilitate in designing of new therapeutic modalities that could help in cancer management

    Apigenin inhibits PMA-induced expression of pro-inflammatory cytokines and AP-1 factors in A549 cells

    Get PDF
    Acute and chronic alveolar or bronchial inflammation is thought to be central to the pathogenesis of many respiratory disorders. Cytokines and granulocyte macrophage colony-stimulating factors (GM-CSF) play an important role in chronic inflammation. Activator protein-1 (AP-1) the superfamily of transcription factors is involved in proliferation, differentiation, apoptosis, and transformation including inflammation. Understanding the function and regulation of proinflammatory factors involved in inflammation may provide the novel therapeutic strategies in the treatment of inflammatory diseases. Our aim of the present study is to investigate the pro-inflammatory cytokines and pattern of AP-1 factors expressed during activation of lung adenocarcinoma A549 cells by Phorbol-12-myristate-13-acetate (PMA) and to understand the anti-inflammatory effect of apigenin. A549 cells were treated with and without PMA or apigenin, and the cell viability was assessed by MTT assay. Expressions of inflammatory mediators and different AP-1 factors were analyzed by semi-quantitative RT-PCR. IL-6 protein secreted was analyzed by ELISA, and expressions of IL-1β, c-Jun, and c-Fos proteins were analyzed by Western blotting. Activation of A549 cells by PMA, induced the expression of pro-inflammatory cytokine (IL-1β, IL-2, IL-6, IL-8, and TNF-α) mRNAs and secretion of IL-6 and the expression of specific AP-1 factors (c-Jun, c-Fos, and Fra-1). Treatment of cells with apigenin, significantly inhibited PMA-stimulated mRNA expression of above pro-inflammatory cytokines, AP-1 factors, cyclooxygenase-2, and secretion of IL-6 protein. Results suggested that the AP-1 factors may be involved in inflammation and apigenin has anti-inflammatory effect, which may be useful for therapeutic management of lung inflammatory diseases. © 2015, Springer Science+Business Media New York

    Aqueous areca nut extract induces oxidative stress in human lung epithelial A549 cells: Probable role of p21 in inducing cell death

    Get PDF
    Areca nut a well-known masticator used across globe. Habitual chewing of areca nut is associated with serious oral health effects. However, the role of areca nut in oxidative stress induction and cell death is less understood. Hence, in the present study we aimed to evaluate the toxic mechanism of areca nut extract on human lung epithelial A549 cells. Cells were treated with or without aqueous areca nut extract and cell viability was measured by MTT assay. Cells treated with areca nut extract show reduced viability in a dose dependent manner with the IC50 of 0.5 concentration. Areca nut extract induced the reactive oxygen species (ROS), lipid peroxidation followed by membrane damage with leakage of lactate dehydrogenase (LDH) enzyme. Cells with continuous exposure of areca nut extract depletes the free radical neutralizing anti-oxidant enzymes like superoxide dismutase (SOD), Glutathione peroxidase (GSH-Px) and Glutathione-S-transferase (GST). Further, the analysis of mRNA expression of apoptotic genes and cell cycle regulators show decreased expression of anti-apoptotic gene (Bcl-2), Cyclin E1, Cyclin D1, CDK4, Rb and p53 whereas induced expression of p21 and marginal increase of pro-apoptotic gene (Bax) confirms the toxic nature of areca nut. Thus, cell death due to areca nut exposure may be through different mechanism rather than the conventional apoptotic pathway, where p21 induction might be independent of p53 action, which possibly suggests that there may be a role of p21 in oxidative stress induced cell death. Further FACS analysis confirms cell death in areca nut treated cells. © 2016 Elsevier Inc

    Differential expression of AP-1 transcription factors in human prostate LNCaP and PC-3 cells: role of Fra-1 in transition to CRPC status

    Get PDF
    Androgen receptor (AR) signaling axis plays a vital role in the development of prostate and critical in the progression of prostate cancer. Androgen withdrawal initially regresses tumors but eventually develops into aggressive castration-resistant prostate cancer (CRPC). Activator Protein-1 (AP-1) transcription factors are most likely to be associated with malignant transformation in prostate cancer. Hence, to determine the implication of AR and AP-1 in promoting the transition of prostate cancer to the androgen-independent state, we used AR-positive LNCaP and AR-negative PC-3 cells as an in vitro model system. The effect of dihydrotestosterone or anti-androgen bicalutamide on the cell proliferation and viability was assessed by MTT assay. Expression studies on AR, marker genes-PSA, TMPRSS2, and different AP-1 factors were analyzed by semi-quantitative RT-PCR and expressions of AR and Fra-1 proteins were analyzed by Western blotting. Dihydrotestosterone induced the cell proliferation in LNCaP with no effect on PC-3 cells. Bicalutamide decreased the viability of both LNCaP and PC-3 cells. Dihydrotestosterone induced the expression of AR, PSA, c-Jun, and Fra-1 in LNCaP cells, and it was c-Jun and c-Fos in case of PC-3 cells, while bicalutamide decreased their expression. In addition, constitutive activation and non-regulation of Fra-1 by bicalutamide in PC-3 cells suggested that Fra-1, probably a key component, involved in transition of aggressive androgen-independent PC-3 cells with poor prognosis. © 2017, Springer Science+Business Media New York

    Stress activated p38 MAPK regulates cell cycle via AP-1 factors in areca extract exposed human lung epithelial cells

    Get PDF
    Abstract Areca nut chewing habits are associated with several oral manifestations like leukoplakia, submucous fibrosis and oral squamous cell carcinoma. Although numerous evidence on areca toxicity is known but the mechanistic pathway of disease causation is to be studied. Aqueous areca nut extract treated A549 cells showed reduced cell viability by 48 h with IC50 value of 0.50%. The toxic nature of areca nut induced the production of reactive oxygen species with decreased anti-oxidant glutathione S transferase levels lead to altered redox homeostasis. PCR studies showed decreased mRNA levels of Jun and Fos AP-1 subunits on extract treatment by 48 h. The protein levels of PCNA, CDK4, RB, p53, c-Jun and c-Fos were found to be downregulated with upregulated CDK inhibitor p21 on extract treatment as compared to control. Results of FACS analysis further confirm G1/S phase cell cycle arrest on areca nut extract exposure. The regulation of downstream AP-1 subunits by MAPKs was studied by using specific inhibitors of ERK, JNK and p38 along with areca nut extract. Results showed the redox activation of MAP kinases down regulated the mRNA levels of AP-1 subunits in aqueous areca nut extract treated cells. Hence the present study aids in elucidating the role of MAP kinases in regulating the AP-1 subunits and their implications on target genes that are involved regulation of various cellular processes. Further, it would help in understanding the mechanistic aspects of the diseased state which may facilitate in designing of new therapeutic modalities that could help in cancer management

    Protein kinases orchestrate cell cycle regulators in differentiating BeWo choriocarcinoma cells

    Get PDF
    Abstract Choriocarcinoma, a trophoblastic neoplasia, occurs in women as an incidence of abnormal pregnancy. BeWo choriocarcinoma cells derived from the abnormal placentation are a suitable model system to study the factors associated with differentiation, invasion and other cellular events as an alternative to clinical samples. Many protein kinases orchestrate the complex events of cell cycle and in case of malignancy such regulators are found to be mutated. In the present study, BeWo cells treated with forskolin (Fo) and phorbol 12-myristate 13-acetate (PMA) were used to study the role of PKA (protein kinase A) and PKC (protein kinase C), respectively, on the expression pattern of differentiation-related genes, membrane markers, PKC isoforms and cell cycle regulators. The effect of Fo and PMA on the cell proliferation was assessed. Progressive induction of alkaline phosphatase level and formation of multinucleated differentiated cells were observed in the cells treated with Fo. Exposure of cells to Fo and PMA induced the mRNA transcripts of α-hCG, β-hCG and endoglin and down-regulates E-cadherin at mRNA and protein levels. Synergistic levels of both up- and down-regulated genes/proteins were observed when cells were treated with the combination of Fo and PMA. The mRNA levels of cyclin D1, cyclin E1, p21, Rb, p53, caspase-3 and caspase-8 decreased gradually during differentiation. Fo significantly inhibited the protein levels of PCNA, Rb, PKC-α and PMA stimulated mRNA expression of PKC-ε and PKC-δ. Further, failure in the activation of essential components of the cell cycle machinery caused G2/M phase arrest in differentiating BeWo cells
    corecore