640 research outputs found

    Screening of fungal strains for cellulolytic and xylanolytic activities production and evaluation of brewers’ spent grain as substrate for enzyme production by selected fungi

    Get PDF
    Brewer’s spent grain (BSG), the solid residue of beer production, is attracting significant attention as raw material for the production of added value substances, since until recently it was mainly used as animal feed or deposited in landfills, causing serious environmental problems. Therefore, this work aimed at developing a bioprocess using BSG as a substrate for the production of cellulases and xylanases for waste saccharification and bioenergy production. Different fungi were analyzed for their cellulolytic and xylanolytic abilities, through a first screening on solid media by assessment of fungal growth and enzyme production on agar containing carboxylmethylcellulose or xylan as the sole carbon source, respectively. The best cellulase and xylanase producers were subjected to quantitative evaluation of enzyme production in liquid cultures. Aspergillus niger LPB-334 was selected for its ability to produce cellulase and xylanase at high levels and it was cultivated on BSG by solid state fermentation. The cellulase production reached a maximum of 118.04 8.4 U/g of dry substrate after 10 days of fermentation, while a maximum xylanase production of 1315.15 37.5 U/g of dry substrate was reached after 4 days. Preliminary characterization of cellulase and xylanase activities and identification of the enzymes responsible were carried out

    Planar Superconducting Resonators with Internal Quality Factors above One Million

    Full text link
    We describe the fabrication and measurement of microwave coplanar waveguide resonators with internal quality factors above 10 million at high microwave powers and over 1 million at low powers, with the best low power results approaching 2 million, corresponding to ~1 photon in the resonator. These quality factors are achieved by controllably producing very smooth and clean interfaces between the resonators' aluminum metallization and the underlying single crystal sapphire substrate. Additionally, we describe a method for analyzing the resonator microwave response, with which we can directly determine the internal quality factor and frequency of a resonator embedded in an imperfect measurement circuit.Comment: 4 pages, 3 figures, 1 tabl

    Excitation of superconducting qubits from hot non-equilibrium quasiparticles

    Full text link
    Superconducting qubits probe environmental defects such as non-equilibrium quasiparticles, an important source of decoherence. We show that "hot" non-equilibrium quasiparticles, with energies above the superconducting gap, affect qubits differently from quasiparticles at the gap, implying qubits can probe the dynamic quasiparticle energy distribution. For hot quasiparticles, we predict a non-neligable increase in the qubit excited state probability P_e. By injecting hot quasiparticles into a qubit, we experimentally measure an increase of P_e in semi-quantitative agreement with the model and rule out the typically assumed thermal distribution.Comment: Main paper: 5 pages, 5 figures. Supplement: 1 page, 1 figure, 1 table. Updated to user-prepared accepted version. Key changes: Supplement added, Introduction rewritten, Figs.2,3,5 revised, Fig.4 adde
    • …
    corecore