50 research outputs found

    Is It Safe Living in the Vicinity of Cellular Towers? Analysis of Long-Term Human EMF Exposure at Population Scale

    Get PDF
    We focus on the ElectroMagnetic Field (EMF) exposure safety for people living in the vicinity of cellular towers. To this aim, we analyze a large dataset of long-term EMF measurements collected over almost 20 years in more than 2000 measurement points spread over an Italian region. We evaluate the relationship between EMF exposure and the following factors: (i) distance from the closest installation(s), (ii) type of EMF sources in the vicinity, (iii) Base Station (BS) technology, and (iv) EMF regulation updates. Overall, the exposure levels from BSs in the vicinity are below the Italian EMF limits, thus ensuring safety for the population. Moreover, BSs represent the lowest exposure compared to Radio/TV repeaters and other EMF sources. However, the BS EMF exposure in proximity to users exhibits an increasing trend over the last years, which is likely due to the pervasive deployment of multiple technologies and to the EMF regulation updates. As a side consideration, if the EMF levels continue to increase with the current trends, the EMF exposure in proximity to BSs will saturate to the maximum EMF limit by the next 20 years at a distance of 30 meters from the closest BS

    Application of the Maximum Power Extrapolation Procedure for Human Exposure Assessment to 5G Millimeter Waves: Challenges and Possible Solutions

    Get PDF
    This paper describes an investigation on the application of the Maximum Power Extrapolation (MPE) technique on a fully operational Fixed Wireless Access (FWA) FR2-band 5G gNB. The data was acquired in [27.1-27.3] GHz band using a network scanner over nearly 10 minutes periods to allow a statistical analysis and an accurate estimation of the role of each contribution to the total uncertainty, including the fading affecting the 5G FR2 reference signal. The results show that the level of the electromagnetic field is well below the limits imposed by Italian legislation. However the goal of the paper is more fundamental, and shows an approach that can be used to identify the critical elements of the measurement set-up, suggesting where to concentrate efforts to improve the measurement procedure. In particular, the uncertainty budget highlights three contributions, (i.e. estimation of the traffic beam level, of the probe response and of the 5G FR2 reference signal) that deserve further investigations

    Massive measurements of 5G exposure in a town: methodology and results

    Get PDF
    We target the problem of performing a large set of measurements over the territory to characterize the exposure from a 5G deployment. Since using a single Spectrum Analyzer (SA) is not practically feasible (due to the limited battery duration), in this work we adopt an integrated approach, based on the massive measurement of 5G metrics with a 5G smartphone, followed by a detailed analysis done with the SA and an ElectroMagnetic Field (EMF) meter in selected locations. Results, obtained over a real territory covered by 5G signal, reveal that 5G exposure is overall very limited for most of measurement locations, both in terms of field strength (up to 0.7 [V/m]) and as share w.r.t. other wireless technologies (typically lower than 15%). Moreover, our approach allows easily spotting measurement outliers, e.g., due to the exploitation of Dynamic Spectrum Sharing (DSS) techniques between 4G and 5G. In addition, the exposure metrics collected with the smartphone are overall a good proxy of the total exposure measured over the whole 5G channel. Moreover, the sight conditions and the distance from 5G base station play a great role in determining the level of exposure. Finally, a maximum of 130 [W] of power radiated by a 5G base station is estimated in the scenario under consideration

    How Much Exposure From 5G Towers Is Radiated Over Children, Teenagers, Schools and Hospitals?

    Get PDF
    The rolling-out of 5G antennas over the territory is a fundamental step to provide 5G connectivity. However, little efforts have been done so far on the exposure assessment from 5G cellular towers over young people and 'sensitive' buildings, like schools and medical centers. To face such issues, we provide a sound methodology for the numerical evaluation of 5G (and pre-5G) downlink exposure over children, teenagers, schools and medical centers. We then apply the proposed methodology over two real scenarios. Results reveal that the exposure from 5G cellular towers will increase in the forthcoming years, in parallel with the growth of the 5G adoption levels. However, the exposure levels are well below the maximum ones defined by international regulations. Moreover, the exposure over children and teenagers is similar to the one of the whole population, while the exposure over schools and medical centers can be lower than the one of the whole set of buildings. Finally, the exposure from 5G is strongly lower than the pre-5G one when the building attenuation is introduced and a maturity adoption level for 5G is assumed

    Civil engineering: buildings

    No full text
    corecore