31 research outputs found

    Minimum-weight codewords of the Hermitian codes are supported on complete intersections

    Full text link
    Let H\mathcal{H} be the Hermitian curve defined over a finite field Fq2\mathbb{F}_{q^2}. In this paper we complete the geometrical characterization of the supports of the minimum-weight codewords of the algebraic-geometry codes over H\mathcal{H}, started in [1]: if dd is the distance of the code, the supports are all the sets of dd distinct Fq2\mathbb{F}_{q^2}-points on H\mathcal{H} complete intersection of two curves defined by polynomials with prescribed initial monomials w.r.t. \texttt{DegRevLex}. For most Hermitian codes, and especially for all those with distance d≥q2−qd\geq q^2-q studied in [1], one of the two curves is always the Hermitian curve H\mathcal{H} itself, while if d<qd<q the supports are complete intersection of two curves none of which can be H\mathcal{H}. Finally, for some special codes among those with intermediate distance between qq and q2−qq^2-q, both possibilities occur. We provide simple and explicit numerical criteria that allow to decide for each code what kind of supports its minimum-weight codewords have and to obtain a parametric description of the family (or the two families) of the supports. [1] C. Marcolla and M. Roggero, Hermitian codes and complete intersections, arXiv preprint arXiv:1510.03670 (2015)

    Higher Hamming weights for locally recoverable codes on algebraic curves

    Get PDF
    We study the locally recoverable codes on algebraic curves. In the first part of this article, we provide a bound of generalized Hamming weight of these codes. Whereas in the second part, we propose a new family of algebraic geometric LRC codes, that are LRC codes from Norm-Trace curve. Finally, using some properties of Hermitian codes, we improve the bounds of distance proposed in [1] for some Hermitian LRC codes. [1] A. Barg, I. Tamo, and S. Vlladut. Locally recoverable codes on algebraic curves. arXiv preprint arXiv:1501.04904, 2015

    On the Hermitian curve and its intersections with some conics

    Get PDF
    We classify completely the intersections of the Hermitian curve with parabolas in the affine plane. To obtain our results we employ well-known algebraic methods for finite fields and geometric properties of the curve automorphisms. In particular, we provide explicit counting formulas that have also applications to some Hermitian codes.Comment: This article is contained in previous article "On the Hermitian curve, its intersections with some conics and their applications to affine-variety codes and Hermitian codes" (arXiv:1208.1627
    corecore