31 research outputs found
Minimum-weight codewords of the Hermitian codes are supported on complete intersections
Let be the Hermitian curve defined over a finite field
. In this paper we complete the geometrical characterization
of the supports of the minimum-weight codewords of the algebraic-geometry codes
over , started in [1]: if is the distance of the code, the
supports are all the sets of distinct -points on
complete intersection of two curves defined by polynomials with
prescribed initial monomials w.r.t. \texttt{DegRevLex}.
For most Hermitian codes, and especially for all those with distance studied in [1], one of the two curves is always the Hermitian curve
itself, while if the supports are complete intersection of
two curves none of which can be .
Finally, for some special codes among those with intermediate distance
between and , both possibilities occur.
We provide simple and explicit numerical criteria that allow to decide for
each code what kind of supports its minimum-weight codewords have and to obtain
a parametric description of the family (or the two families) of the supports.
[1] C. Marcolla and M. Roggero, Hermitian codes and complete intersections,
arXiv preprint arXiv:1510.03670 (2015)
Higher Hamming weights for locally recoverable codes on algebraic curves
We study the locally recoverable codes on algebraic curves. In the first part
of this article, we provide a bound of generalized Hamming weight of these
codes. Whereas in the second part, we propose a new family of algebraic
geometric LRC codes, that are LRC codes from Norm-Trace curve. Finally, using
some properties of Hermitian codes, we improve the bounds of distance proposed
in [1] for some Hermitian LRC codes.
[1] A. Barg, I. Tamo, and S. Vlladut. Locally recoverable codes on algebraic
curves. arXiv preprint arXiv:1501.04904, 2015
On the Hermitian curve and its intersections with some conics
We classify completely the intersections of the Hermitian curve with
parabolas in the affine plane. To obtain our results we employ well-known
algebraic methods for finite fields and geometric properties of the curve
automorphisms. In particular, we provide explicit counting formulas that have
also applications to some Hermitian codes.Comment: This article is contained in previous article "On the Hermitian
curve, its intersections with some conics and their applications to
affine-variety codes and Hermitian codes" (arXiv:1208.1627