5 research outputs found

    Infections with VIM-1 Metallo-β-Lactamase-Producing Enterobacter cloacae and Their Correlation with Clinical Outcome▿

    Full text link
    The aim of this study was to ascertain the incidence and clinical significance of metallo-β-lactamases among Enterobacter strains isolated from patients with nosocomial infections. We prospectively collected data on patients with Enterobacter infection during a 13-month period. All of the strains were investigated for antibiotic susceptibility, the presence and expression of metallo-β-lactamases, and clonality. Of 29 infections (11 involving the urinary tract, 7 pneumonias, 3 skin/soft tissue infections, 3 intra-abdominal infections, 3 bacteremias, and 2 other infections), 7 (24%) were caused by Enterobacter cloacae strains harboring a blaVIM-1 gene associated or not with a blaSHV12 gene. Infections caused by VIM-1-producing strains were more frequently associated with a recent prior hospitalization (P = 0.006), cirrhosis (P = 0.03), relapse of infection (P < 0.001), and more prolonged duration of antibiotic therapy (P = 0.01) than were other infections. All of the isolates were susceptible to imipenem and meropenem and had blaVIM-1 preceded by a weak P1 promoter and inactivated P2 promoters. Most VIM-1-producing Enterobacter isolates belonged to a main clone, but four different clones were found. Multiclonal VIM-1-producing E. cloacae infections are difficult to diagnose due to an apparent susceptibility to various beta-lactams, including carbapenems, and are associated with a high relapse rate and a more prolonged duration of antibiotic therapy

    E240V Substitution Increases Catalytic Efficiency toward Ceftazidime in a New Natural TEM-Type Extended-Spectrum β-Lactamase, TEM-149, from Enterobacter aerogenes and Serratia marcescens Clinical Isolates▿

    Full text link
    The aim of this study was to characterize a novel extended-spectrum β-lactamase that belongs to the TEM family, the TEM-149 enzyme, and that was isolated from the urine of two hospitalized patients from different hospitals in southern Italy. The peculiarity of this enzyme was the finding of a valine residue at position 240. The array of amino acid substitutions found in TEM-149 was as follows: E104K, R164S, M182T, and E240V. A reversion of a threonine residue at position 182 was also performed to create a new mutant, TEM-149T182M, in order to assess the contribution of this substitution on the kinetic profile and the stability of TEM-149. The blaTEM-149 and blaTEM-149/T182M genes were cloned into pBC-SK, and the corresponding enzymes were purified from recombinant Escherichia coli HB101 by the same procedure. Both enzymes hydrolyzed all β-lactams tested, with a preference for ceftazidime, which was found to be the best substrate. By comparison of the kinetic parameters of the TEM-149 and the TEM-149T182M enzymes, a reduction of the catalytic efficiency for the TEM-149T182M mutant was observed against all substrates tested except benzylpenicillin, cefotaxime, and aztreonam. Tazobactam, clavulanic acid, and sulbactam were good inhibitors of the TEM-149 β-lactamase

    RIvaroxaban and VAscular Surgery (RIVAS): insights from a multicenter, worldwide web-based survey

    Full text link
    no abstract availabl
    corecore