78 research outputs found
Identification of the zinc finger 216 (ZNF216) in human carcinoma cells. A potential regulator of EGFR activity
Epidermal Growth Factor Receptor (EGFR), a member of the ErbB family of receptor tyrosine kinase (RTK) proteins, is aberrantly expressed or deregulated in tumors and plays pivotal roles in cancer onset and metastatic progression. ZNF216 gene has been identified as one of Immediate Early Genes (IEGs) induced by RTKs. Overexpression of ZNF216 protein sensitizes 293 cell line to TNF-α induced apoptosis. However, ZNF216 overexpression has been reported in medulloblastomas and metastatic nasopharyngeal carcinomas. Thus, the role of this protein is still not clearly understood. In this study, the inverse correlation between EGFR and ZNF216 expression was confirmed in various human cancer cell lines differently expressing EGFR. EGF treatment of NIH3T3 cells overexpressing both EGFR and ZNF216 (NIH3T3-EGFR/ZNF216), induced a long lasting activation of EGFR in the cytosolic fraction and an accumulation of phosphorylated EGFR (pEGFR) more in the nuclear than in the cytosolic fraction compared to NIH3T3-EGFR cells. Moreover, EGF was able to stimulate an increased expression of ZNF216 in the cytosolic compartment and its nuclear translocation in a time-dependent manner in NIH3T3-EGFR/ZNF216. A similar trend was observed in A431 cells endogenously expressing the EGFR and transfected with Znf216. The increased levels of pEGFR and ZNF216 in the nuclear fraction of NIH3T3-EGFR/ZNF216 cells were paralleled by increased levels of phospho-MAPK and phospho-Akt. Surprisingly, EGF treatment of NIH3T3-EGFR/ZNF216 cells induced a significant increase of apoptosis thus indicating that ZNF216 could sensitize cells to EGF-induced apoptosis and suggesting that it may be involved in the regulation and effects of EGFR signaling
EGF and TGF-β1 Effects on Thyroid Function
Normal epithelial thyroid cells in culture are inhibited by TGF-β1. Instead, transformed thyroid cell lines are frequently resistant to its growth inhibitory effect. Loss of TGF-β responsiveness could be due to a reduced expression of TGF-β receptors, as shown in transformed rat thyroid cell lines and in human thyroid tumors, or to alterations of other genes controlling TGF-β signal transduction pathway. However, in thyroid neoplasia, a complex pattern of alterations occurring during transformation and progression has been identified. Functionally, TGF-β1 acts as a tumor suppressor in the early stage of transformation or as a tumor promoter in advanced cancer. This peculiar pleiotropic behaviour of TGF-β may result from cross-talk with signalling pathways mediated by other growth factors, among which EGF-like ligands play an important role. This paper reports evidences on TGF-β1 and EGF systems in thyroid tumors and on the cross-talk between these growth factors in thyroid cancer
The bromodomain and extra-terminal domain degrader MZ1 exhibits preclinical anti-tumoral activity in diffuse large B-cell lymphoma of the activated B cell-like type
AIM: Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that play a fundamental role in transcription regulation. Preclinical and early clinical evidence sustain BET targeting as an anti-cancer approach. BET degraders are chimeric compounds comprising of a BET inhibitor, which allows the binding to BET bromodomains, linked to a small molecule, binder for an E3 ubiquitin ligase complex, triggering BET proteins degradation via the proteasome. These degraders, called proteolysis-targeting chimeras (PROTACs), can exhibit greater target specificity compared to BET inhibitors and overcome some of their limitations, such as the upregulation of the BET proteins themselves. Here are presented data on the anti-tumor activity and the mechanism of action of the BET degrader MZ1 in diffuse large B cell lymphoma (DLBCL) of the activated B-cell like (ABC, ABC DLBCL), using a BET inhibitor as a comparison. METHODS: Established lymphoma cell lines were exposed for 72 h to increasing doses of the compounds. Cell proliferation was evaluated by using an 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide (MTT) assay. Fluorescent-Activated Cell Sorter (FACS) analysis was performed to measure apoptotic activation and RNA sequencing (RNA-Seq) to study the transcriptional changes induced by the compounds. RESULTS: MZ1, and not its negative control epimer cisMZ1, was very active with a median half maximal inhibitory concentration (IC(50)) of 49 nmol/L. MZ1 was more in vitro active than the BET inhibitor birabresib (OTX015). Importantly, MZ1 induced cell death in all the ABC DLBCL cell lines, while the BET inhibitor was cytotoxic only in a fraction of them. BET degrader and inhibitor shared partially similar changes at transcriptome level but the MZ1 effect was stronger and overlapped with that caused cyclin-dependent kinase 9 (CDK9) inhibition. CONCLUSIONS: The BET degrader MZ1 had strong cytotoxic activity in all the ABC DLBCL cell lines that were tested, and, at least in vitro, it elicited more profound effects than BET inhibitors, and encourages further investigations
New molecular and therapeutic insights into canine diffuse large B cell lymphoma elucidates the role of the dog as a model for human disease
open21siopenAresu, Luca; Ferraresso, Serena; Marconato, Laura; Cascione, Luciano; Napoli, Sara; Gaudio, Eugenio; Kwee, Ivo; Tarantelli, Chiara; Testa, Andrea; Maniaci, Chiara; Ciulli, Alessio; Hillmann, Petra; Bohnacker, Thomas; Wymann, Matthias P; Comazzi, Stefano; Milan, Massimo; Riondato, Fulvio; Dalla Rovere, Giulia; Giantin, Mery; Giannuzzi, Diana; Bertoni, FrancescoAresu, Luca; Ferraresso, Serena; Marconato, Laura; Cascione, Luciano; Napoli, Sara; Gaudio, Eugenio; Kwee, Ivo; Tarantelli, Chiara; Testa, Andrea; Maniaci, Chiara; Ciulli, Alessio; Hillmann, Petra; Bohnacker, Thomas; Wymann, Matthias P; Comazzi, Stefano; Milan, Massimo; Riondato, Fulvio; Dalla Rovere, Giulia; Giantin, Mery; Giannuzzi, Diana; Bertoni, Francesc
ADCT-602, a Novel PBD Dimer–containing Antibody–Drug Conjugate for Treating CD22-positive Hematologic Malignancies
Relapsed or refractory B-cell acute lymphoblastic leukemia (R/R B-ALL) and lymphomas have poor patient outcomes; novel therapies are needed. CD22 is an attractive target for antibody–drug conjugates (ADCs), being highly expressed in R/R B-ALL with rapid internalization kinetics. ADCT-602 is a novel CD22-targeting ADC, consisting of humanized mAb hLL2-C220, site specifically conjugated to the pyrrolobenzodiazepine dimer–based payload tesirine. In preclinical studies, ADCT-602 demonstrated potent, specific cytotoxicity in CD22-positive lymphomas and leukemias. ADCT-602 was specifically bound, internalized, and trafficked to lysosomes in CD22-positive tumor cells; after cytotoxin release, DNA interstrand crosslink formation persisted for 48 hours. In the presence of CD22-positive tumor cells, ADCT-602 caused bystander killing of CD22-negative tumor cells. A single ADCT-602 dose led to potent, dose-dependent, in vivo antitumor activity in subcutaneous and disseminated human lymphoma/leukemia models. Pharmacokinetic analyses (rat and cynomolgus monkey) showed excellent stability and tolerability of ADCT-602. Cynomolgus monkey B cells were efficiently depleted from circulation after one dose. Gene signature association analysis revealed IRAK1 as a potential marker for ADCT-602 resistance. Combining ADCT-602 + pacritinib was beneficial in ADCT-602–resistant cells. Chidamide increased CD22 expression on B-cell tumor surfaces, increasing ADCT-602 activity. These data support clinical testing of ADCT-602 in R/R B-ALL (NCT03698552) and CD22-positive hematologic cancers
A first-in-class Wiskott-Aldrich syndrome protein activator with anti-tumor activity in hematologic cancers
Hematological cancers are among the most common cancers in adults and children. Despite significant improvements in therapies, many patients still succumb to the disease. Therefore, novel therapies are needed. The Wiskott-Aldrich syndrome protein (WASp) family regulates actin assembly in conjunction with the Arp2/3 complex, a ubiquitous nucleation factor. WASp is expressed exclusively in hematopoietic cells and exists in two allosteric conformations: autoinhibited or activated. Here, we describe the development of EG-011, a first-in-class small molecule activator of the WASp auto-inhibited form. EG-011 possesses in vitro and in vivo anti-tumor activity as a single agent in lymphoma, leukemia, and multiple myeloma, including models of secondary resistance to PI3K, BTK, and proteasome inhibitors. The in vitro activity was confirmed in a lymphoma xenograft. Actin polymerization and WASp binding was demonstrated using multiple techniques. Transcriptome analysis highlighted homology with drugs-inducing actin polymerization
Targeting CD19-positive lymphomas with the antibody-drug conjugate loncastuximab tesirine: preclinical evidence as single agent and in combination therapy
Antibody-drug conjugates (ADCs) represent one of the most successful therapeutic approaches introduced in clinical practice in the last few years. Loncastuximab tesirine (ADCT-402) is a CD19 targeting ADC, in which the antibody is conjugated through a protease cleavable dipeptide linker to a pyrrolobenzodiazepine (PBD) dimer warhead (SG3199). Based on the results of a phase 2 study, loncastuximab tesirine was recently approved for adult patients with relapsed/refractory large B-cell lymphoma.
We assessed the activity of loncastuximab tesirine using in vitro and in vivo models of lymphomas, correlated its activity with CD19 expression levels, and identified combination partners providing synergy with loncastuximab tesirine.
Loncastuximab tesirine was tested across 60 lymphoma cell lines. Loncastuximab tesirine had strong cytotoxic activity in B-cell lymphoma cell lines. The in vitro activity was correlated with CD19 expression level and intrinsic sensitivity of cell lines to the ADC’s warhead. Loncastuximab tesirine was more potent than other anti-CD19 ADCs (coltuximab ravtansine, huB4-DGN462), albeit the pattern of activity across cell lines was correlated. Loncastuximab tesirine activity was also largely correlated with cell line sensitivity to R-CHOP. Combinatorial in vitro and in vivo experiments identified the benefit of adding loncastuximab tesirine to other agents, especially BCL2 and PI3K inhibitors.
Our data support the further development of loncastuximab tesirine as a single agent and in combination for patients affected by mature B-cell neoplasms. The results also highlight the importance of CD19 expression and the existence of lymphoma populations characterized by resistance to multiple therapies
- …